Abstract

Micromilling can fabricate complex features in a wide range of engineering materials with an excellent finish but the limited flexural stiffness of the micro-end mill can result in catastrophic tool failure. This issue can be overcome by using high rotational speeds. Note that the combination of high rotational speeds and low flexural stiffness can induce process instability which is aggravated by the accelerated wear of the micro-tools at high speeds, specifically, for Ti-alloys. The effect of progressive tool wear on the stability has been investigated in micromilling of Ti-6Al-4V. For incorporating tool wear, the cutting force coefficients are modeled as a function of initial and instantaneous cutting edge radius (CER) and feed per tooth. The initial CER of the micro-tool is considered due to the inherent variability in the tool grinding process. A significant increase (85–114%) in the instantaneous CER is observed with an increase in the length of cut. A 2DOF time-domain model based on semi-discretization method has been used to characterize the evolution of stability limits with an increase in the length of cut. The progressive tool wear affects the stability limits along with the initial CER and the feed per tooth. At higher speeds (90,000–110,000 rpm), the effect of progressive tool wear is pronounced and the stability limits reduce by ∼30% in that range.

References

1.
Chae
,
J.
,
Park
,
S. S.
, and
Freiheit
,
T.
,
2006
, “
Investigation of Micro-Cutting Operations
,”
Int. J. Mach. Tools Manuf.
,
46
(
3–4
), pp.
313
332
. 10.1016/j.ijmachtools.2005.05.015
2.
Jun
,
M. B. G.
,
Liu
,
X.
,
DeVor
,
R. E.
, and
Kapoor
,
S. G.
,
2006
, “
Investigation of the Dynamics of Microend Milling—Part I: Model Development
,”
ASME J. Manuf. Sci. Eng.
,
128
(
4
), pp.
893
900
. 10.1115/1.2193546
3.
Afazov
,
S. M.
,
Ratchev
,
S. M.
,
Segal
,
J.
, and
Popov
,
A. A.
,
2012
, “
Chatter Modelling in Micro-Milling by Considering Process Nonlinearities
,”
Int. J. Mach. Tools Manuf.
,
56
, pp.
28
38
. 10.1016/j.ijmachtools.2011.12.010
4.
Li
,
G.
,
Yi
,
S.
,
Wen
,
C.
, and
Ding
,
S.
,
2018
, “
Wear Mechanism and Modeling of Tribological Behavior of Polycrystalline Diamond Tools When Cutting Ti6Al4V
,”
ASME J. Manuf. Sci. Eng.
,
140
(
12
), p.
121011
. 10.1115/1.4041327
5.
Vieira
,
J. M.
,
Machado
,
A. R.
, and
Ezugwu
,
E. O.
,
2001
, “
Performance of Cutting Fluids During Face Milling of Steels
,”
J. Mater. Process. Technol.
,
116
(
2–3
), pp.
244
251
. 10.1016/S0924-0136(01)01010-X
6.
Childs
,
T. H. C.
,
2010
, “
Surface Energy, Cutting Edge Radius and Material Flow Stress Size Effects in Continuous Chip Formation of Metals
,”
CIRP J. Manuf. Sci. Technol.
,
3
(
1
), pp.
27
39
. 10.1016/j.cirpj.2010.07.008
7.
Yang
,
K.
,
Liang
,
Y. C.
,
Zheng
,
K. N.
,
Bai
,
Q. S.
, and
Chen
,
W. Q.
,
2011
, “
Tool Edge Radius Effect on Cutting Temperature in Micro-End-Milling Process
,”
Int. J. Adv. Manuf. Technol.
,
52
(
9–12
), pp.
905
912
. 10.1007/s00170-010-2795-z
8.
Afazov
,
S.
,
Ratchev
,
S.
, and
Segal
,
J.
,
2011
, “
Effects of the Cutting Tool Edge Radius on the Stability Lobes in Micro-Milling
,”
Adv. Mater. Res.
,
223
, pp.
859
868
. 10.4028/www.scientific.net/AMR.223.859
9.
Malekian
,
M.
,
Park
,
S. S.
, and
Jun
,
M. B. G.
,
2009
, “
Tool Wear Monitoring of Micro-Milling Operations
,”
J. Mater. Process. Technol.
,
209
(
10
), pp.
4903
4914
. 10.1016/j.jmatprotec.2009.01.013
10.
Jun
,
M. B. G.
,
DeVor
,
R. E.
,
Kapoor
,
S. G.
, and
Englert
,
F.
,
2008
, “
Experimental Investigation of Machinability and Tool Wear in Micro-Endmilling
,”
Trans. NAMRI/SME
,
36
, pp.
201
208
.
11.
Li
,
H.
,
Lai
,
X.
,
Li
,
C.
,
Feng
,
J.
, and
Ni
,
J.
,
2008
, “
Modelling and Experimental Analysis of the Effects of Tool Wear, Minimum Chip Thickness and Micro Tool Geometry on the Surface Roughness in Micro-End-Milling
,”
J. Micromech. Microeng.
,
18
(
2
), pp.
025006
025018
. 10.1088/0960-1317/18/2/025006
12.
Popov
,
K. B.
,
Elkaseer
,
A.
,
Dimov
,
S.
, and
Minev
,
R.
,
2010
, “
Material Microstructure Effect-Based Investigation of Tool Wear in Micro-Endmilling of Multi-Phase Materials
,”
7th International Conference on Multi-Material Micro Manufacture
,
Bourg en Bresse and Oyonnax, France
,
Nov. 17–19
, pp.
188
191
.
13.
Niu
,
J.
,
Ding
,
Y.
,
Geng
,
Z.
,
Zhu
,
L.
, and
Ding
,
H.
,
2018
, “
Patterns of Regenerative Milling Chatter Under Joint Influences of Cutting Parameters, Tool Geometries, and Runout
,”
ASME J. Manuf. Sci. Eng.
,
140
(
12
), p.
121004
. 10.1115/1.4041250
14.
Altintas
,
Y.
,
Eynian
,
M.
, and
Onozuka
,
H.
,
2008
, “
Identification of Dynamic Cutting Force Coefficients and Chatter Stability With Process Damping
,”
CIRP Ann.
,
57
(
1
), pp.
371
374
. 10.1016/j.cirp.2008.03.048
15.
Aguiar
,
M. M.
,
Diniz
,
A. E.
, and
Pederiva
,
R.
,
2013
, “
Correlating Surface Roughness, Tool Wear and Tool Vibration in the Milling Process of Hardened Steel Using Long Slender Tools
,”
Int. J. Mach. Tools Manuf.
,
68
, pp.
1
10
. 10.1016/j.ijmachtools.2013.01.002
16.
Nadimi
,
S.
, and
Oliaei
,
B.
,
2016
, “
Influence of Tool Wear on Machining Forces and Tool Deflections During Micro Milling
,”
Int. J. Adv. Manu. Technol.
,
84
(
9–12
), pp.
1963
1980
. 10.1007/s00170-015-7744-4
17.
Graham
,
E.
,
Mehrpouya
,
M.
,
Nagamune
,
R.
, and
Park
,
S. S.
,
2014
, “
Robust Prediction of Chatter Stability in Micro Milling Comparing Edge Theorem and LMI
,”
CIRP J. Manuf. Sci. Technol.
,
7
(
1
), pp.
29
39
. 10.1016/j.cirpj.2013.09.002
18.
Singh
,
K. K.
,
Kartik
,
V.
, and
Singh
,
R.
,
2016
, “
Modeling of Dynamic Instability Via Segmented Cutting Coefficients and Chatter Onset Detection in High-Speed Micromilling of Ti6Al4V
,”
ASME J. Manuf. Sci. Eng.
,
139
(
5
), p.
051005
. 10.1115/1.4034897
19.
Singh
,
K. K.
,
Kartik
,
V.
, and
Singh
,
R.
,
2015
, “
Modeling Dynamic Stability in High-Speed Micromilling of Ti-6Al-4V Via Velocity and Chip Load Dependent Cutting Coefficients
,”
Int. J. Mach. Tools Manuf.
,
96
, pp.
56
66
. 10.1016/j.ijmachtools.2015.06.002
20.
Mittal
,
R. K.
,
Kulkarni
,
S. S.
, and
Singh
,
R.
,
2018
, “
Characterization of Lubrication Sensitivity on Dynamic Stability in High-Speed Micromilling of Ti–6Al–4V Via a Novel Numerical Scheme
,”
Int. J. Mech. Sci.
,
142–143
, pp.
51
65
. 10.1016/j.ijmecsci.2018.04.038
21.
Altintas
,
Y.
,
Stepan
,
G.
,
Merdol
,
D.
, and
Dombovari
,
Z.
,
2008
, “
Chatter Stability of Milling in Frequency and Discrete Time Domain
,”
CIRP J. Manuf. Sci. Technol.
,
1
(
1
), pp.
35
44
. 10.1016/j.cirpj.2008.06.003
22.
Insperger
,
T.
,
Mann
,
B. P.
,
Stépán
,
G.
, and
Bayly
,
P. V.
,
2003
, “
Stability of Up-Milling and Down-Milling, Part 1: Alternative Analytical Methods
,”
Int. J. Mach. Tools Manuf.
,
43
(
1
), pp.
25
34
. 10.1016/S0890-6955(02)00159-1
23.
Insperger
,
T.
, and
Stépán
,
G.
,
2002
, “
Semi-Discretization Method for Delayed Systems
,”
Int. J. Numer. Methods Eng.
,
55
(
5
), pp.
503
518
. 10.1002/nme.505
24.
Honeycutt
,
A.
, and
Schmitz
,
T. L.
,
2016
, “
Milling Stability Interrogation by Subharmonic Sampling
,”
ASME J. Manuf. Sci. Eng.
,
139
(
4
), p.
041009
. 10.1115/1.4034894
25.
Honeycutt
,
A.
, and
Schmitz
,
T. L.
,
2018
, “
Milling Bifurcations: A Review of Literature and Experiment
,”
ASME J. Manuf. Sci. Eng.
,
140
(
12
), p.
120801
. 10.1115/1.4041325
You do not currently have access to this content.