Hybrid additive manufacturing (hybrid-AM) has described hybrid processes and machines as well as multimaterial, multistructural, and multifunctional printing. The capabilities afforded by hybrid-AM are rewriting the design rules for materials and adding a new dimension in the design for additive manufacturing (AM) paradigm. This work primarily focuses on defining hybrid-AM in relation to hybrid manufacturing (HM) and classifying hybrid-AM processes. Hybrid-AM machines, materials, structures, and function are also discussed. Hybrid-AM processes are defined as the use of AM with one or more secondary processes or energy sources that are fully coupled and synergistically affect part quality, functionality, and/or process performance. Historically, defining HM processes centered on process improvement rather than improvements to part quality or performance; however, the primary goal for the majority of hybrid-AM processes is to improve part quality and part performance rather than improve processing. Hybrid-AM processes are typically a cyclic process chain and are distinguished from postprocessing operations that do not meet the fully coupled criterion. Secondary processes and energy sources include subtractive and transformative manufacturing technologies, such as machining, remelting, peening, rolling, and friction stir processing (FSP). As interest in hybrid-AM grows, new economic and sustainability tools are needed as well as sensing technologies that better facilitate hybrid processing. Hybrid-AM has ushered in the next evolutionary step in AM and has the potential to profoundly change the way goods are manufactured.

References

1.
Flynn
,
J. M.
,
Shokrani
,
A.
,
Newman
,
S. T.
, and
Dhokia
,
V.
,
2016
, “
Hybrid Additive and Subtractive Machine Tools—Research and Industrial Developments
,”
Int. J. Mach. Tools Manuf.
,
101
, pp.
79
101
.
2.
Merklein
,
M.
,
Junker
,
D.
,
Schaub
,
A.
, and
Neubauer
,
F.
,
2016
, “
Hybrid Additive Manufacturing Technologies—An Analysis Regarding Potentials and Applications
,”
Phys. Procedia
,
83
, pp.
549
559
.
3.
Strong
,
D.
,
Sirichakwal
,
I.
,
Manogharan
,
G. P.
, and
Wakefield
,
T.
,
2017
, “
Current State and Potential of Additive—Hybrid Manufacturing for Metal Parts
,”
Rapid Prototyping J.
,
23
(
3
), pp.
577
588
.
4.
Lorenz
,
K. A.
,
Jones
,
J. B.
,
Wimpenny
,
D. I.
, and
Jackson
,
M. R.
,
2015
, “
A Review of Hybrid Manufacturing
,” Solid Freeform Fabrication Symposium (
SFF
), Austin, TX, Aug. 10–12, pp.
96
108
.https://sffsymposium.engr.utexas.edu/sites/default/files/2015/2015-8-Lorenz.pdf
5.
Lauwers
,
B.
,
Klocke
,
F.
,
Klink
,
A.
,
Tekkaya
,
A. E.
,
Neugebauer
,
R.
, and
Mcintosh
,
D.
,
2014
, “
Hybrid Processes in Manufacturing
,”
CIRP Ann.-Manuf. Technol.
,
63
(
2
), pp.
561
583
.
6.
Klocke
,
F.
,
Roderburg
,
A.
, and
Zeppenfeld
,
C.
,
2011
, “
Design Methodology for Hybrid Production Processes
,”
Procedia Eng.
,
9
, pp.
417
430
.
7.
Nau
,
B.
,
Roderburg
,
A.
, and
Klocke
,
F.
,
2011
, “
Ramp-Up of Hybrid Manufacturing Technologies
,”
CIRP J. Manuf. Sci. Technol.
,
4
(
3
), pp.
313
316
.
8.
Schuh
,
G.
,
Kreysa
,
J.
, and
Orilski
,
S.
,
2009
, “
Roadmap ‘Hybride Produktion’: Wie 1 + 1 = 3-Effekte in der Produktion maximiert werden können
,”
Z. Wirtsch. Fabrikbetr.
,
104
(
5
), pp.
385
391
.
9.
Chu
,
W.
,
Kim
,
C.
,
Lee
,
H.
,
Choi
,
J.
,
Park
,
J.
,
Song
,
J.
,
Jang
,
K.
, and
Ahn
,
S.
,
2014
, “
Hybrid Manufacturing in Micro/Nano Scale: A Review
,”
Int. J. Precis. Eng. Manuf.-Green Technol.
,
1
(
1
), pp.
75
92
.
10.
Kozak
,
J.
, and
Rajurkar
,
K. P.
,
2000
, “
Hybrid Machining Process Evaluation and Development
,” Second
International Conference on Machining and Measurements of Sculptured Surfaces
, Kraków, Poland, pp.
501
536
.
11.
Ashby
,
M. F.
,
2005
, “
Designing Hybrid Materials
,”
Materials Selection in Mechanical Design
,
M. F.
Ashby
, ed.,
Butterworth-Heinemann
,
Amsterdam, The Netherlands
, pp.
339
377
.
12.
Kickelbick
,
G.
,
2006
, “
Introduction to Hybrid Materials
,”
Hybrid Materials: Synthesis, Characterization, and Applications
,
G.
Kickelbick
, ed.,
Wiley
,
Weinheim, Germany
, pp.
1
48
.
13.
Shin
,
Y. C.
,
2011
, “
Laser Assisted Machining
,” PennWell Corporation, Tulsa, OK, accessed Aug. 3, 2016, https://www.industrial-lasers.com/articles/print/volume-26/issue-1/features/laser-assisted-machining.html
14.
Xu
,
W.
, and
Zhang
,
L.
,
2015
, “
Ultrasonic Vibration-Assisted Machining: Principle, Design and Application
,”
Adv. Manuf.
,
3
(
3
), pp.
173
192
.
15.
Menzies
,
I.
, and
Koshy
,
P.
,
2008
, “
Assessment of Abrasion-Assisted Material Removal in Wire EDM
,”
CIRP Ann.-Manuf. Technol.
,
57
(
1
), pp.
195
198
.
16.
Valiev
,
R. Z.
,
Zehetbauer
,
M. J.
,
Estrin
,
Y.
,
Höppel
,
H. W.
,
Ivanisenko
,
Y.
,
Hahn
,
H.
,
Wilde
,
G.
,
Roven
,
H. J.
,
Sauvage
,
X.
, and
Langdon
,
T. G.
,
2007
, “
The Innovation Potential of Bulk Nanostructured Materials
,”
Adv. Eng. Mater.
,
9
(
7
), pp.
527
533
.
17.
Brehl
,
D. E.
, and
Dow
,
T. A.
,
2008
, “
Review of Vibration-Assisted Machining
,”
Precis. Eng.
,
32
(
3
), pp.
153
172
.
18.
Lauwers
,
B.
,
Bleicher
,
F.
,
Ten Haaf
,
P.
,
Vanparys
,
M.
,
Bernreiter
,
J.
,
Jacobs
,
T.
, and
Loenders
,
J.
,
2010
, “
Investigation of the Process-Material Interaction in Ultrasonic Assisted Grinding of ZrO2 Based Ceramic Materials
,”
Fourth CIRP International Conference on High Performance Cutting
, Gifu, Japan, Oct. 24–26, pp.
1
6
.https://pdfs.semanticscholar.org/8a98/fecd76ae3fb96014f94949b6368666fadb53.pdf
19.
Brecher
,
C.
,
Rosen
,
C.
, and
Emonts
,
M.
,
2010
, “
Laser-Assisted Milling of Advanced Materials
,”
Phys. Procedia
,
5
(
Pt. B
), pp.
259
272
.
20.
Brecher
,
C.
,
Emonts
,
M.
,
Rosen
,
C.
, and
Hermani
,
J.
,
2011
, “
Laser-Assisted Milling of Advanced Materials
,”
Phys. Procedia
,
12
(
Pt. A
), pp.
599
606
.
21.
Ding
,
H.
, and
Shin
,
Y. C.
,
2010
, “
Laser-Assisted Machining of Hardened Steel Parts With Surface Integrity Analysis
,”
Int. J. Mach. Tools Manuf.
,
50
(
1
), pp.
106
114
.
22.
Jeon
,
Y.
, and
Lee
,
C. M.
,
2012
, “
Current Research Trend on Laser Assisted Machining
,”
Int. J. Precis. Eng. Manuf.
,
13
(
2
), pp.
311
317
.
23.
Sun
,
S.
,
Brandt
,
M.
, and
Dargusch
,
M. S.
,
2010
, “
Thermally Enhanced Machining of Hard-to-Machine Materials—A Review
,”
Int. J. Mach. Tools Manuf.
,
50
(
8
), pp.
663
680
.
24.
Kumar
,
M.
,
Melkote
,
S.
, and
Lahoti
,
G.
,
2011
, “
Laser-Assisted Microgrinding of Ceramics
,”
CIRP Ann.-Manuf. Technol.
,
60
(
1
), pp.
367
370
.
25.
Wang
,
Z. Y.
, and
Rajurkar
,
K. P.
,
2000
, “
Cryogenic Machining of Hard-to-Cut Materials
,”
Wear
,
239
(
2
), pp.
168
175
.
26.
Ezugwu
,
E. O.
, and
Bonney
,
J.
,
2004
, “
Effect of High-Pressure Coolant Supply When Machining Nickel-Base, Inconel 718, Alloy With Coated Carbide Tools
,”
J. Mater. Process. Technol.
,
153–154
, pp.
1045
1050
.
27.
Wertheim
,
R.
,
Rotberg
,
J.
, and
Ber
,
A.
,
1992
, “
Influence of High-Pressure Flushing Through the Rake Face of the Cutting Tool
,”
CIRP Ann.-Manuf. Technol.
,
41
(
1
), pp.
101
106
.
28.
de Lacalle
,
L. N. L.
,
Pérez-Bilbatua
,
J.
,
Sánchez
,
A. J.
,
Llorente
,
I. J.
,
Gutiérrez
,
A.
, and
Albóniga
,
J.
,
2000
, “
Using High Pressure Coolant in the Drilling and Turning of Low Machinability Alloys
,”
Int. J. Adv. Manuf. Technol.
,
16
(
2
), pp.
85
91
.
29.
Rajurkar
,
K. P.
,
Zhu
,
D.
,
McGeough
,
J. A.
,
Kozak
,
J.
, and
De Silva
,
A.
,
1999
, “
New Developments in Electro-Chemical Machining
,”
CIRP Ann.-Manuf. Technol.
,
48
(
2
), pp.
567
579
.
30.
Kozak
,
J.
,
Zybura-Skrabalak
,
M.
, and
Skrabalak
,
G.
,
2016
, “
Development of Advanced Abrasive Electrical Discharge Grinding (AEDG) System for Machining Difficult-to-Cut Materials
,”
Procedia CIRP
,
42
, pp.
872
877
.
31.
Zhu
,
D.
,
Zeng
,
Y. B.
,
Xu
,
Z. Y.
, and
Zhang
,
X. Y.
,
2011
, “
Precision Machining of Small Holes by the Hybrid Process of Electrochemical Removal and Grinding
,”
CIRP Ann.-Manuf. Technol.
,
60
(
1
), pp.
247
250
.
32.
Golabczak
,
A.
, and
Swiecik
,
R.
,
2010
, “
Electro-Discharge Grinding: Energy Consumption and Internal Stresses in the Surface Layer
,”
16th International Symposium on Electromachining
(
ISEM
), Shanghai, China, Apr. 19–23, pp.
517
522
.https://www.researchgate.net/profile/Robert_Swiecik/publication/272020304_Electro-discharge_Grinding_Energy_Consumption_and_Internal_Stresses_in_the_Surface_Layer/links/54feffbb0cf2eaf210b47420/Electro-discharge-Grinding-Energy-Consumption-and-Internal-Stresses-in-the-Surface-Layer.pdf
33.
Koshy
,
P.
,
Jain
,
V. K.
, and
Lal
,
G. K.
,
1997
, “
Grinding of Cemented Carbide With Electrical Spark Assistance
,”
J. Mater. Process. Technol.
,
72
(
1
), pp.
61
68
.
34.
Matsubara
,
K.
,
Miyahara
,
Y.
,
Horita
,
Z.
, and
Langdon
,
T. G.
,
2003
, “
Developing Superplasticity in a Magnesium Alloy Through a Combination of Extrusion and ECAP
,”
Acta Mater.
,
51
(
11
), pp.
3073
3084
.
35.
Miyahara
,
Y.
,
Horita
,
Z.
, and
Langdon
,
T. G.
,
2006
, “
Exceptional Superplasticity in an AZ61 Magnesium Alloy Processed by Extrusion and ECAP
,”
Mater. Sci. Eng. A
,
420
(
1–2
), pp.
240
244
.
36.
CIRTES Stratoconception
,
2017
, “Stratoconception Process,” Stratoconception, Saint-Dié-des-Vosges, France, accessed Apr. 24, 2017, http://cirtes.com/en/stratoconception/
37.
Williams
,
R. E.
, and
Melton
,
V. L.
,
1998
, “
Abrasive Flow Finishing of Stereolithography Prototypes
,”
Rapid Prototyping J.
,
4
(
2
), pp.
56
67
.
38.
Williams
,
R. E.
,
Walczyk
,
D. F.
, and
Dang
,
H. T.
,
2007
, “
Using Abrasive Flow Machining to Seal and Finish Conformal Channels in Laminated Tooling
,”
Rapid Prototyping J.
,
13
(
2
), pp.
64
75
.
39.
Azushima
,
A.
,
Kopp
,
R.
,
Korhonen
,
A.
,
Yang
,
D. Y.
,
Micari
,
F.
,
Lahoti
,
G. D.
,
Groche
,
P.
,
Yanagimoto
,
J.
,
Tsuji
,
N.
,
Rosochowski
,
A.
, and
Yanagida
,
A.
,
2008
, “
Severe Plastic Deformation (SPD) Processes for Metals
,”
CIRP Ann.-Manuf. Technol.
,
57
(
2
), pp.
716
735
.
40.
Qian
,
Y.
,
Huang
,
J.
,
Zhang
,
H.
, and
Wang
,
G.
,
2008
, “
Direct Rapid High-Temperature Alloy Prototyping by Hybrid Plasma-Laser Technology
,”
J. Mater. Process. Technol.
,
208
(
1–3
), pp.
99
104
.
41.
Lamikiz
,
A.
,
Sánchez
,
J. A.
,
López de Lacalle
,
L. N.
, and
Arana
,
J. L.
,
2007
, “
Laser Polishing of Parts Built Up by Selective Laser Sintering
,”
Int. J. Mach. Tools Manuf.
,
47
(
12–13
), pp.
2040
2050
.
42.
Ramos-Grez
,
J. A.
, and
Bourell
,
D. L.
,
2004
, “
Reducing Surface Roughness of Metallic Freeform-Fabricated Parts Using Non-Tactile Finishing Methods
,”
Int. J. Mater. Prod. Technol.
,
21
(
4
), pp.
297
316
.
43.
Yasa
,
E.
, and
Kruth
,
J.
,
2011
, “
Application of Laser Re-Melting on Selective Laser Melting Parts
,”
Adv. Prod. Eng. Manage.
,
6
(
4
), pp.
259
270
.http://apem-journal.org/Archives/2011/APEM6-4_259-270.pdf
44.
Yasa
,
E.
,
Deckers
,
J.
, and
Kruth
,
J. P.
,
2011
, “
The Investigation of the Influence of Laser Re‐Melting on Density, Surface Quality and Microstructure of Selective Laser Melting Parts
,”
Rapid Prototyping J.
,
17
(
5
), pp.
312
327
.
45.
Yasa
,
E.
,
Kruth
,
J. P.
, and
Deckers
,
J.
,
2011
, “
Manufacturing by Combining Selective Laser Melting and Selective Laser Erosion/Laser Re-Melting
,”
CIRP Ann.-Manuf. Technol.
,
60
(
1
), pp.
263
266
.
46.
Campanelli
,
S. L.
,
Casalino
,
G.
,
Contuzzi
,
N.
, and
Ludovico
,
A. D.
,
2013
, “
Taguchi Optimization of the Surface Finish Obtained by Laser Ablation on Selective Laser Molten Steel Parts
,”
Procedia CIRP
,
12
, pp.
462
467
.
47.
Sealy
,
M. P.
,
Madireddy
,
G.
,
Li
,
C.
, and
Guo
,
Y. B.
,
2016
, “
Finite Element Modeling of Hybrid Additive Manufacturing by Laser Shock Peening
,”
Solid Freeform Fabrication Symposium
(
SFF
), Austin, TX, Aug. 8–10, pp.
306
316
.https://sffsymposium.engr.utexas.edu/sites/default/files/2016/021-Sealy.pdf
48.
Prinz
,
F. B.
, and
Weiss
,
L. E.
,
1993
, “Method and Apparatus for Fabrication of Three-Dimensional Metal Articles by Weld Deposition,” U.S. Patent No.
5,207,371A
.https://www.google.co.in/patents/US5207371
49.
Hartmann
,
K.
,
Krishnan
,
R.
,
Merz
,
R.
,
Neplotnik
,
G.
,
Prinz
,
F.
, and
Schultz
,
L.
,
1994
, “
Robot-Assisted Shape Deposition Manufacturing
,”
IEEE International Conference on Robotics and Automation
(
ROBOT
), San Diego, CA, May 8–13, pp.
2890
2895
.
50.
Merz
,
R.
,
Prinz
,
F. B.
,
Ramaswami
,
K.
,
Terk
,
M.
, and
Weiss
,
L. E.
,
1994
, “
Shape Deposition Manufacturing
,”
Solid Freeform Fabrication Symposium
(
SFF
), Austin, TX, Aug. 8–10, pp.
1
8
.https://sffsymposium.engr.utexas.edu/Manuscripts/1994/1994-01-Merz.pdf
51.
Prinz
,
F. B.
,
Weiss
,
L.
,
Amon
,
C.
, and
Beuth
,
J.
,
1995
, “Processing, Thermal and Mechanical Issues in Shape Deposition Manufacturing,” Carnegie Mellon Carnegie Mellon University, Pittsburgh, PA, Technical Report No.
EDRC 24-119-95
.https://pdfs.semanticscholar.org/7a7a/6961f6dac7861db7de51e7680e9990a09e85.pdf
52.
Gale
,
J.
,
Achuthan
,
A.
, and
Don
,
A. U.
,
2016
, “
Material Property Enhancement in Additive Manufactured Materials Using an Ultrasonic Peening Technique
,”
Solid Freeform Fabrication Symposium
(
SFF
), Austin, TX, Aug. 8–10.
53.
Bamberg
,
J.
,
Hess
,
T.
,
Hessert
,
R.
, and
Satzger
,
W.
,
2012
, “Verfahren zum herstellen, reparieren oder austauschen eines bauteils mit verfestigen mittels druckbeaufschlagung,” Mtu Aero Engines Gmbh, Munich, Germany, Patent No. WO 2012152259 A1.
54.
El-Wardany
,
T. I.
,
Lynch
,
M. E.
,
Viens
,
D. V.
, and
Grelotti
,
R. A.
,
2014
, “Turbine Disk Fabrication With In Situ Material Property Variation,” United Technologies Corporation, Farmington, CT, U.S. Patent No.
US20140255198 A1
https://www.google.com/patents/US20140255198.
55.
Kramer
,
K. J.
,
Bayramian
,
A.
,
El-dasher
,
B. S.
, and
Farmer
,
J. C.
,
2014
, “System and Method for Enhanced Additive Manufacturing,” Lawrence Livermore National Security, LLC, U.S. Patent No.
US20140367894 A1
.https://www.google.com/patents/US20140367894
56.
Sidhu
,
J.
, and
Wescott
,
A. D.
,
2016
, “Additive Manufacturing and Integrated Impact Post-Treatment,” BAE Systems Inc., Farnborough, UK, Patent No.
WO2016092253 A1
.https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2016092253
57.
Wu
,
Z.
,
Li
,
Y.
,
Abbott
,
D. H.
,
Chen
,
X.
,
Broderick
,
T. F.
,
Marte
,
J. S.
,
Woodfield
,
A. P. I.
, and
Ott
,
E. A.
,
2015
, “Method for Manufacturing Objects Using Powder Products,” General Electric Company, U.S. Patent No.
20150283614 A1
.http://google.com/patents/US20150283614?cl=fi
58.
Kalentics
,
N.
,
Logé
,
R.
, and
Boillat
,
E.
,
2017
, “Method and Device for Implementing Laser Shock Peening or Warm Laser Shock Peening During Selective Laser Melting,” École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland, U.S. Patent No.
US2017/0087670 A1
.http://www.google.ch/patents/US20170087670?hl=de&cl=en
59.
Kalentics
,
N.
,
Boillat
,
E.
,
Peyre
,
P.
,
Gorny
,
C.
,
Kenel
,
C.
,
Leinenbach
,
C.
,
Jhabvala
,
J.
, and
Logé
,
R.
,
2017
, “
3D Laser Shock Peening—A New Method for the 3D Control of Residual Stresses in Selective Laser Melting
,”
Mater. Des.
,
130
, pp.
350
356
.
60.
Colegrove
,
P. A.
,
Donoghue
,
J.
,
Martina
,
F.
,
Gu
,
J.
,
Prangnell
,
P.
, and
Hönnige
,
J.
,
2017
, “
Application of Bulk Deformation Methods for Microstructural and Material Property Improvement and Residual Stress and Distortion Control in Additively Manufactured Components
,”
Scr. Mater.
,
135
, pp.
111
118
.
61.
Martina
,
F.
,
Roy
,
M. J.
,
Szost
,
B. A.
,
Terzi
,
S.
,
Colegrove
,
P. A.
,
Williams
,
S. W.
,
Withers
,
P. J.
,
Meyer
,
J.
, and
Hofmann
,
M.
,
2016
, “
Residual Stress of as-Deposited and Rolled Wire + Arc Additive Manufacturing Ti–6Al–4V Components
,”
Mater. Sci. Technol.
,
32
(
14
), pp.
1439
1448
.
62.
Donoghue
,
J.
,
Antonysamy
,
A. A.
,
Martina
,
F.
,
Colegrove
,
P. A.
,
Williams
,
S. W.
, and
Prangnell
,
P. B.
,
2016
, “
The Effectiveness of Combining Rolling Deformation With Wire–Arc Additive Manufacture on β-Grain Refinement and Texture Modification in Ti–6Al–4V
,”
Mater. Charact.
,
114
, pp.
103
114
.
63.
Colegrove
,
P. A.
,
Martina
,
F.
,
Roy
,
M. J.
,
Szost
,
B. A.
,
Terzi
,
S.
,
Williams
,
S. W.
,
Withers
,
P. J.
, and
Jarvis
,
D.
,
2014
, “
High Pressure Interpass Rolling of Wire + Arc Additively Manufactured Titanium Components
,”
Adv. Mater. Res.
,
996
, pp.
694
700
.
64.
Colegrove
,
P. A.
,
Coules
,
H. E.
,
Fairman
,
J.
,
Martina
,
F.
,
Kashoob
,
T.
,
Mamash
,
H.
, and
Cozzolino
,
L. D.
,
2013
, “
Microstructure and Residual Stress Improvement in Wire and Arc Additively Manufactured Parts Through High-Pressure Rolling
,”
J. Mater. Process. Technol.
,
213
(
10
), pp.
1782
1791
.
65.
Martina
,
F.
,
Williams
,
S. W.
, and
Colegrove
,
P.
,
2013
, “
Improved Microstructure and Increased Mechanical Properties of Additive Manufacture Produced Ti-6Al-4V by Interpass Cold Rolling
,”
Solid Freeform Fabrication Symposium
(
SFF
), Austin, TX, Aug. 12–14, pp.
490
496
.https://sffsymposium.engr.utexas.edu/Manuscripts/2013/2013-38-Martina.pdf
66.
Martina
,
F.
,
Colegrove
,
P.
,
Williams
,
S. W.
, and
Meyer
,
J.
,
2015
, “
Microstructure of Interpass Rolled Wire + Arc Additive Manufacturing Ti-6Al-4V Components
,”
Metall. Mater. Trans. A
,
46
(
12
), pp.
6103
6118
.
67.
Zhang
,
H. O.
,
Rui
,
D. M.
,
Xie
,
Y.
, and
Wang
,
G. L.
,
2013
, “
Study on Metamorphic Rolling Mechanism for Metal Hybrid Additive Manufacturing
,”
Solid Freeform Fabrication Symposium
(
SFF
), Austin, TX, Aug. 12–14, pp.
188
189
.https://sffsymposium.engr.utexas.edu/Manuscripts/2013/2013-15-Zhang.pdf
68.
Zhang
,
H. O.
,
Xie
,
Y.
,
Rui
,
D. M.
, and
Wang
,
G. L.
,
2013
, “
Hybrid Deposition and Micro Rolling Manufacturing Method of Metallic Parts
,”
Solid Freeform Fabrication Symposium
(
SFF
), Austin, TX, Aug. 12–14, pp.
267
281
.https://sffsymposium.engr.utexas.edu/Manuscripts/2013/2013-22-Zhang.pdf
69.
Xie
,
Y.
,
Zhang
,
H.
,
Wang
,
G.
, and
Zhou
,
F.
,
2014
, “
A Novel Metamorphic Mechanism for Efficient Additive Manufacturing of Components With Variable Wall Thickness
,”
Solid Freeform Fabrication Symposium
(
SFF
), Austin, TX, Aug. 4–6, pp.
210
223
.https://sffsymposium.engr.utexas.edu/sites/default/files/2014-019-Xie.pdf
70.
Xie
,
Y.
,
Zhang
,
H.
, and
Zhou
,
F.
,
2016
, “
Improvement in Geometrical Accuracy and Mechanical Property for Arc-Based Additive Manufacturing Using Metamorphic Rolling Mechanism
,”
ASME J. Manuf. Sci. Eng.
,
138
(
11
), p.
111002
.
71.
Zhou
,
X.
,
Zhang
,
H.
,
Wang
,
G.
,
Bai
,
X.
,
Fu
,
Y.
, and
Zhao
,
J.
,
2016
, “
Simulation of Microstructure Evolution During Hybrid Deposition and Micro-Rolling Process
,”
J. Mater. Sci.
,
51
(
14
), pp.
6735
6749
.
72.
Levy
,
G. N.
,
Schindel
,
R.
, and
Kruth
,
J. P.
,
2003
, “
Rapid Manufacturing and Rapid Tooling With Layer Manufacturing (LM) Technologies, State of the Art and Future Perspectives
,”
CIRP Ann.-Manuf. Technol.
,
52
(
2
), pp.
589
609
.
73.
Hur
,
J.
,
Lee
,
K.
,
Zhu-hu
, and
Kim
,
J.
,
2002
, “
Hybrid Rapid Prototyping System Using Machining and Deposition
,”
Comput.-Aided Des.
,
34
(
10
), pp.
741
754
.
74.
Jeng
,
J.
, and
Lin
,
M.
,
2001
, “
Mold Fabrication and Modification Using Hybrid Processes of Selective Laser Cladding and Milling
,”
J. Mater. Process. Technol.
,
110
(
1
), pp.
98
103
.
75.
Akula
,
S.
, and
Karunakaran
,
K. P.
,
2006
, “
Hybrid Adaptive Layer Manufacturing: An Intelligent Art of Direct Metal Rapid Tooling Process
,”
Rob. Comput.-Integr. Manuf.
,
22
(
2
), pp.
113
123
.
76.
Karunakaran
,
K. P.
,
Shanmuganathan
,
P. V.
,
Jadhav
,
S. J.
,
Bhadauria
,
P.
, and
Pandey
,
A.
,
2000
, “
Rapid Prototyping of Metallic Parts and Moulds
,”
J. Mater. Process. Technol.
,
105
(
3
), pp.
371
381
.
77.
Choi
,
D.
,
Lee
,
S. H.
,
Shin
,
B. S.
,
Whang
,
K. H.
,
Song
,
Y. A.
,
Park
,
S. H.
, and
Jee
,
H. S.
,
2001
, “
Development of a Direct Metal Freeform Fabrication Technique Using CO2 Laser Welding and Milling Technology
,”
J. Mater. Process. Technol.
,
113
(
1–3
), pp.
273
279
.
78.
Friel
,
R. J.
, and
Harris
,
R. A.
,
2013
, “
Ultrasonic Additive Manufacturing—A Hybrid Production Process for Novel Functional Products
,”
Procedia CIRP
,
6
, pp.
35
40
.
79.
Karunakaran
,
K. P.
,
Suryakumar
,
S.
,
Pushpa
,
V.
, and
Akula
,
S.
,
2010
, “
Low Cost Integration of Additive and Subtractive Processes for Hybrid Layered Manufacturing
,”
Rob. Comput.-Integr. Manuf.
,
26
(
5
), pp.
490
499
.
80.
Kerschbaumer
,
M.
, and
Ernst
,
G.
,
2004
, “
Hybrid Manufacturing Process for Rapid High Performance Tooling Combining High Speed Milling and Laser Cladding
,”
23rd International Congress on Applications of Lasers and Electro-Optics (ICALEO)
, San Francisco, CA, pp.
1
10
.
81.
Kruth
,
J. P.
,
Leu
,
M. C.
, and
Nakagawa
,
T.
,
1998
, “
Progress in Additive Manufacturing and Rapid Prototyping
,”
CIRP Ann.-Manuf. Technol.
,
47
(
2
), pp.
525
540
.
82.
Liou
,
F.
,
Slattery
,
K.
,
Kinsella
,
M.
,
Newkirk
,
J.
,
Chou
,
H. N.
, and
Landers
,
R.
,
2006
, “
Applications of a Hybrid Manufacturing Process for Fabrication and Repair of Metallic Structures
,”
Solid Freeform Fabrication Symposium
(
SFF
), Austin, TX, Aug. 14–16, pp.
1
11
.https://pdfs.semanticscholar.org/3b34/41e5b04cc029cf822c3189fed3e914f57deb.pdf
83.
Liou
,
F. W.
,
Choi
,
J.
,
Landers
,
R. G.
,
Janardhan
,
V.
,
Balakrishnan
,
S. N.
, and
Agarwal
,
S.
,
2001
, “
Research and Development of a Hybrid Rapid Manufacturing Process
,”
Solid Freeform Fabrication Symposium
(
SFF
), Austin, TX, Aug. 6–8, pp.
138
145
.http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.466.5755&rep=rep1&type=pdf
84.
Nagel
,
J. K. S.
, and
Liou
,
F. W.
,
2012
, “
Hybrid Manufacturing System Design and Development
,”
Manufacturing System
,
F. A.
Aziz
, ed.,
InTech
,
Rijeka, Croatia
, pp.
223
246
.
85.
Newman
,
S. T.
,
Zhu
,
Z.
,
Dhokia
,
V.
, and
Shokrani
,
A.
,
2015
, “
Process Planning for Additive and Subtractive Manufacturing Technologies
,”
CIRP Ann.-Manuf. Technol.
,
64
(
1
), pp.
467
470
.
86.
Song
,
Y.
, and
Park
,
S.
,
2006
, “
Experimental Investigations Into Rapid Prototyping of Composites by Novel Hybrid Deposition Process
,”
J. Mater. Process. Technol.
,
171
(
1
), pp.
35
40
.
87.
Song
,
Y. A.
,
Park
,
S.
,
Jee
,
H.
,
Choi
,
D.
, and
Shin
,
B.
,
1999
, “
3D Welding and Milling—A Direct Approach for Fabrication of Injection Molds
,”
Solid Freeform Fabrication Symposium
(
SFF
), Austin, TX, Aug. 9–11, pp.
793
800
.https://sffsymposium.engr.utexas.edu/Manuscripts/1999/1999-092-Song.pdf
88.
Pridham
,
M.
, and
Thomson
,
G.
,
1993
, “
Part Fabrication Using Laser Machining and Welding
,”
Solid Freeform Fabrication Symposium
(
SFF
), Austin, TX, Aug. 9–11, pp.
74
80
.https://sffsymposium.engr.utexas.edu/Manuscripts/1993/1993-08-Pridham.pdf
89.
Sreenathbabu
,
A.
,
Karunakaran
,
K. P.
, and
Amarnath
,
C.
,
2005
, “
Statistical Process Design for Hybrid Adaptive Layer Manufacturing
,”
Rapid Prototyping J.
,
11
(
4
), pp.
235
248
.
90.
Zhu
,
Z.
,
Dhokia
,
V.
,
Newman
,
S. T.
, and
Nassehi
,
A.
,
2014
, “
Application of a Hybrid Process for High Precision Manufacture of Difficult to Machine Prismatic Parts
,”
Int. J. Adv. Manuf. Technol.
,
74
(
5–8
), pp.
1115
1132
.
91.
Kulkarni
,
P.
, and
Dutta
,
D.
,
1999
, “
On the Integration of Layered Manufacturing and Material Removal Processes
,”
ASME J. Manuf. Sci. Eng.
,
122
(
1
), pp.
100
108
.
92.
Karunakaran
,
K. P.
,
Sreenathbabu
,
A.
, and
Pushpa
,
V.
,
2004
, “
Hybrid Layered Manufacturing: Direct Rapid Metal Tool-Making Process
,”
Proc. Inst. Mech. Eng., Part B
,
218
(
12
), pp.
1657
1665
.
93.
Xinhong
,
X.
,
Haiou
,
Z.
,
Guilan
,
W.
, and
Guoxian
,
W.
,
2010
, “
Hybrid Plasma Deposition and Milling for an Aeroengine Double Helix Integral Impeller Made of Superalloy
,”
Rob. Comput.-Integr. Manuf.
,
26
(
4
), pp.
291
295
.
94.
Klocke
,
F.
,
Wirtz
,
H.
, and
Meiners
,
W.
,
1996
, “
Direct Manufacturing of Metal Prototypes and Prototype Tools
,”
Solid Freeform Fabrication Symposium
(
SFF
), Austin, TX, Aug. 12–14, pp.
141
148
.https://sffsymposium.engr.utexas.edu/Manuscripts/1996/1996-18-Klocke.pdf
95.
Yamazaki
,
T.
,
2016
, “
Development of a Hybrid Multi-Tasking Machine Tool: Integration of Additive Manufacturing Technology With CNC Machining
,”
Procedia CIRP
,
42
, pp.
81
86
.
96.
Song
,
Y.
,
Park
,
S.
,
Choi
,
D.
, and
Jee
,
H.
,
2005
, “
3D Welding and Milling—Part I: A Direct Approach for Freeform Fabrication of Metallic Prototypes
,”
Int. J. Mach. Tools Manuf.
,
45
(
9
), pp.
1057
1062
.
97.
Fessler
,
J. R.
,
Merz
,
R.
,
Nickel
,
A. H.
,
Prinz
,
F. B.
, and
Weiss
,
L. E.
,
1996
, “
Laser Deposition of Metals for Shape Deposition Manufacturing
,”
Solid Freeform Fabrication Symposium
(
SFF
), Austin, TX, Aug. 12–14, pp.
117
124
.https://sffsymposium.engr.utexas.edu/Manuscripts/1996/1996-15-Fessler.pdf
98.
Ichimura
,
M.
,
Urushisaki
,
Y.
,
Amaya
,
K.
,
Chappell
,
S.
,
Honnami
,
M.
,
Mochizuki
,
M.
, and
Chung
,
U.
,
2014
, “
Medical Implant Manufacture Using the Hybrid Metal Laser Sintering With Machining Process
,”
15th International Conference on Precision Engineering (ICPE)
, Kanazawa, Japan, July 22–25, pp.
1
2
.
99.
Brown
,
D.
,
Li
,
C.
,
Liu
,
Z. Y.
,
Fang
,
X. Y.
, and
Guo
,
Y. B.
,
2017
, “
Surface Integrity of Inconel 718 by Hybrid Selective Laser Melting and Milling
,”
Virtual Phys. Prototyping
,
13
(1), pp.
26
31
.
100.
Xiong
,
X.
,
Zhang
,
H.
, and
Wang
,
G.
,
2009
, “
Metal Direct Prototyping by Using Hybrid Plasma Deposition and Milling
,”
J. Mater. Process. Technol.
,
209
(
1
), pp.
124
130
.
101.
Amon
,
C. H.
,
Beuth
,
J. L.
,
Weiss
,
L. E.
,
Merz
,
R.
, and
Prinz
,
F. B.
,
1998
, “
Shape Deposition Manufacturing With Microcasting: Processing, Thermal and Mechanical Issues
,”
ASME J. Manuf. Sci. Eng.
,
120
(
3
), pp.
656
665
.
102.
Schwope
,
L.
,
Friel
,
R. J.
,
Johnson
,
K. E.
, and
Harris
,
R. A.
,
2009
, “Field Repair and Replacement Part Fabrication of Military Components Using Ultrasonic Consolidation Cold Metal Deposition,” Applied Vehicle Technology Panel (AVT) Specialists' Meeting, Bonn, Germany Oct. 19–22, Paper No.
RTO-MP-AVT-163
.https://dspace.lboro.ac.uk/dspace-jspui/bitstream/2134/14489/3/MP-AVT-163-22.pdf
103.
Mizukami
,
Y.
, and
Osakada
,
K.
,
2002
, “
Three-Dimensional Fabrication of Metallic Parts and Molds Using Hybrid Process of Powder Layer Compaction and Milling
,” Solid Freeform Fabrication Symposium (
SFF
), Austin, TX, Aug. 5–7, pp.
474
481
.http://edge.rit.edu/edge/P10551/public/SFF/SFF%202002%20Proceedings/2002%20SFF%20Papers/54-Mizukami.pdf
104.
ISO/ASTM International,
2016
, “Standard Terminology for Additive Manufacturing—General Principles—Terminology,” Committee F42 on Additive Manufacturing Technologies, ASTM International, West Conshohocken, PA, Standard No.
ISO/ASTM52900 - 15
.https://www.astm.org/Standards/ISOASTM52900.htm
105.
Wang
,
Z.
,
Liu
,
R.
,
Sparks
,
T.
,
Liu
,
H.
, and
Liou
,
F.
,
2015
, “
Stereo Vision Based Hybrid Manufacturing Process for Precision Metal Parts
,”
Precis. Eng.
,
42
, pp.
1
5
.
106.
America Makes
,
2016
, “
Improving Productivity by Integrating Automatic Finishing With Direct Metal Additive Manufacturing—Success Story: Hybrid Direct Manufacturing: Integrating Additive and Subtractive Methods
,” America Makes, Youngstown, OH, accessed Nov. 9, 2017 https://www.americamakes.us/wp-content/uploads/sites/2/2017/06/4029_SuccessStory.pdf
107.
Yasa
,
E.
, and
Kruth
,
J. P.
,
2010
, “
Investigation of Laser and Process Parameters for Selective Laser Erosion
,”
Precis. Eng.
,
34
(
1
), pp.
101
112
.
108.
Shiomi
,
M.
,
Osakada
,
K.
,
Nakamura
,
K.
,
Yamashita
,
T.
, and
Abe
,
F.
,
2004
, “
Residual Stress Within Metallic Model Made by Selective Laser Melting Process
,”
CIRP Ann.-Manuf. Technol.
,
53
(
1
), pp.
195
198
.
109.
Ding
,
K.
, and
Ye
,
L.
,
2006
,
Laser Shock Peening: Performance and Process Simulation
,
Woodhead Publishing
,
Cambridge, UK
.
110.
AlMangour
,
B.
, and
Yang
,
J.
,
2016
, “
Improving the Surface Quality and Mechanical Properties by Shot-Peening of 17-4 Stainless Steel Fabricated by Additive Manufacturing
,”
Mater. Des.
,
110
, pp.
914
924
.
111.
Salvati
,
E.
,
Lunt
,
A. J. G.
,
Ying
,
S.
,
Sui
,
T.
,
Zhang
,
H. J.
,
Heason
,
C.
,
Baxter
,
G.
, and
Korsunsky
,
A. M.
,
2017
, “
Eigenstrain Reconstruction of Residual Strains in an Additively Manufactured and Shot Peened Nickel Superalloy Compressor Blade
,”
Comput. Methods Appl. Mech. Eng.
,
320
, pp.
335
351
.
112.
Kanger
,
C.
,
Hadidi
,
H.
,
Akula
,
S.
,
Sandman
,
C.
,
Quint
,
J.
,
Alsunni
,
M.
,
Underwood
,
R. P.
,
Slafter
,
C.
,
Sonderup
,
J.
,
Spilinek
,
M.
,
Casias
,
J.
,
Rao
,
P.
, and
Sealy
,
M. P.
,
2017
, “
Effect of Process Parameters and Shot Peening on Mechanical Behavior of ABS Parts Manufactured by Fused Filament Fabrication (FFF)
,” Solid Freeform Fabrication Symposium (
SFF
), Austin, TX, Aug. 7–9, pp.
1
15
.https://sffsymposium.engr.utexas.edu/sites/default/files/2017/Manuscripts/EffectofProcessParametersandShotPeeningonM.pdf
113.
Montazeri
,
M.
,
Madireddy
,
G.
,
Curtis
,
E.
,
Underwood
,
N.
,
Berger
,
J.
,
Al Khayari
,
Y.
,
Marth
,
B.
,
Smith
,
B.
,
Christy
,
S.
,
Krueger
,
K.
,
Sealy
,
M. P.
, and
Rao
,
P.
,
2017
, “
Effect of Process Parameters and Shot Peening on the Tensile Strength and Deflection of Polymer Parts Made Using Mask Image Projection Stereolithography (MIP-SLA)
,”
Solid Freeform Fabrication Symposium
(
SFF
), Austin, TX, Aug. 7–9, pp.
1
10
.https://sffsymposium.engr.utexas.edu/sites/default/files/2017/Manuscripts/EffectofProcessParametersandShotPeeningont.pdf
114.
Book
,
T. A.
, and
Sangid
,
M. D.
,
2016
, “
Evaluation of Select Surface Processing Techniques for In Situ Application During the Additive Manufacturing Build Process
,”
JOM
,
68
(
7
), pp.
1780
1792
.
115.
Gibson
,
I.
,
Rosen
,
D. W.
, and
Stucker
,
B.
,
2015
,
Additive Manufacturing Technologies: 3D Printing, Rapid Prototyping, and Direct Digital Manufacturing
, 2nd ed.,
Springer
, New York, pp.
1
498
.
116.
Lunney
,
J. G.
,
1995
, “
Pulsed Laser Deposition of Metal and Metal Multilayer Films
,”
Appl. Surf. Sci.
,
86
(
1
), pp.
79
85
.
117.
Boyd
,
I. W.
,
1996
, “
Thin Film Growth by Pulsed Laser Deposition
,”
Ceram. Int.
,
22
(
5
), pp.
429
434
.
118.
Morgan
,
R.
,
Sutcliffe
,
C.
, and
O'Neill
,
W.
,
2001
, “
Experimental Investigation of Nanosecond Pulsed Nd:YAG Laser Re-Melted Pre-Placed Powder Beds
,”
Rapid Prototyping J.
,
7
(
3
), pp.
159
172
.
119.
Zhou
,
Y. C.
,
Yang
,
Z. Y.
, and
Zheng
,
X. J.
,
2003
, “
Residual Stress in PZT Thin Films Prepared by Pulsed Laser Deposition
,”
Surf. Coat. Technol.
,
162
(
2–3
), pp.
202
211
.
120.
Palanivel
,
S.
,
Nelaturu
,
P.
,
Glass
,
B.
, and
Mishra
,
R. S.
,
2015
, “
Friction Stir Additive Manufacturing for High Structural Performance Through Microstructural Control in an Mg Based WE43 Alloy
,”
Mater. Des.
,
65
, pp.
934
952
.
121.
Francis
,
R.
,
Newkirk
,
J. W.
, and
Liou
,
F.
,
2014
, “
Investigation of Forged-Like Microstructure Produced by a Hybrid Manufacturing Process
,” Solid Freeform Fabrication Symposium (
SFF
), Austin, TX, Aug. 4–6, pp.
484
499
.https://sffsymposium.engr.utexas.edu/sites/default/files/2014-041-Francis.pdf
122.
Thompson
,
M. K.
,
Moroni
,
G.
,
Vaneker
,
T.
,
Fadel
,
G.
,
Campbell
,
R. I.
,
Gibson
,
I.
,
Bernard
,
A.
,
Schulz
,
J.
,
Graf
,
P.
,
Ahuja
,
B.
, and
Martina
,
F.
,
2016
, “
Design for Additive Manufacturing: Trends, Opportunities, Considerations, and Constraints
,”
CIRP Ann.-Manuf. Technol.
,
65
(
2
), pp.
737
760
.
123.
MacDonald
,
E.
,
Salas
,
R.
,
Espalin
,
D.
,
Perez
,
M.
,
Aguilera
,
E.
,
Muse
,
D.
, and
Wicker
,
R. B.
,
2014
, “
3D Printing for the Rapid Prototyping of Structural Electronics
,”
IEEE Access
,
2
, pp.
234
242
.
124.
Vaezi
,
M.
,
Chianrabutra
,
S.
,
Mellor
,
B.
, and
Yang
,
S.
,
2013
, “
Multiple Material Additive Manufacturing—Part 1: A Review
,”
Virtual Phys. Prototyping
,
8
(
1
), pp.
19
50
.
125.
Huang
,
P.
,
Deng
,
D.
, and
Chen
,
Y.
,
2013
, “
Modeling and Fabrication of Heterogeneous Three-Dimensional Objects Based on Additive Manufacturing
,” Solid Freeform Fabrication Symposium (
SFF
), Austin, TX, Aug. 12–14, pp.
215
230
.https://sffsymposium.engr.utexas.edu/Manuscripts/2013/2013-17-Huang.pdf
126.
Zhou
,
C.
,
Chen
,
Y.
,
Yang
,
Z.
, and
Khoshnevis
,
B.
,
2011
, “
Development of a Multi-Material Mask-Image-Projection-Based Stereolithography for the Fabrication of Digital Materials
,” Solid Freeform Fabrication Symposium (
SFF
), Austin, TX, Aug. 8–10, pp.
65
80
.https://sffsymposium.engr.utexas.edu/Manuscripts/2011/2011-06-Zhou.pdf
127.
Gaynor
,
A. T.
,
Meisel
,
N. A.
,
Williams
,
C. B.
, and
Guest
,
J. K.
,
2014
, “
Multiple-Material Topology Optimization of Compliant Mechanisms Created Via PolyJet Three-Dimensional Printing
,”
ASME J. Manuf. Sci. Eng.
,
136
(
6
), p.
061015
.
128.
Li
,
J.
,
Wasley
,
T.
,
Nguyen
,
T. T.
,
Ta
,
V. D.
,
Shephard
,
J. D.
,
Stringer
,
J.
,
Smith
,
P.
,
Esenturk
,
E.
,
Connaughton
,
C.
, and
Kay
,
R.
,
2016
, “
Hybrid Additive Manufacturing of 3D Electronic Systems
,”
J. Micromech. Microeng.
,
26
(
10
), p. 105005.
129.
Niendorf
,
T.
,
Leuders
,
S.
,
Riemer
,
A.
, and
Schwarze
,
D.
,
2014
, “
Functionally Graded Alloys Obtained by Additive Manufacturing
,”
Adv. Eng. Mater.
,
16
(
7
), pp.
857
861
.
130.
Wu
,
S.
,
Yang
,
C.
,
Hsu
,
W.
, and
Lin
,
L.
,
2015
, “
3D-Printed Microelectronics for Integrated Circuitry and Passive Wireless Sensors
,”
Microsyst. Nanoeng.
,
1
, p.
15013
.
131.
Wohlers
,
T.
, and
Caffrey
,
T.
,
2015
,
Wohlers Report 2015: 3D Printing and Additive Manufacturing State of the Industry Annual Worldwide Progress Report
,
Wohlers Associates
, Fort Collins, CO, pp.
1
314
.
132.
Manogharan
,
G.
,
Wysk
,
R. A.
, and
Harrysson
,
O. L. A.
,
2016
, “
Additive Manufacturing–Integrated Hybrid Manufacturing and Subtractive Processes: Economic Model and Analysis
,”
Int. J. Comput. Integr. Manuf.
,
29
(
5
), pp.
473
488
.
133.
NIST,
2013
, “Measurement Science Roadmap for Metal-Based Additive Manufacturing,” U.S. Department of Commerce, Gaithersburg, MD,
Workshop Summary Report
.https://www.nist.gov/sites/default/files/documents/el/isd/NISTAdd_Mfg_Report_FINAL-2.pdf
134.
Hu
,
D.
, and
Kovacevic
,
R.
,
2003
, “
Sensing, Modeling and Control for Laser-Based Additive Manufacturing
,”
Int. J. Mach. Tools Manuf.
,
43
(
1
), pp.
51
60
.
135.
Jacobsmühlen
,
J. Z.
,
Kleszczynski
,
S.
,
Schneider
,
D.
, and
Witt
,
G.
,
2013
, “
High Resolution Imaging for Inspection of Laser Beam Melting Systems
,”
IEEE International Instrumentation and Measurement Technology Conference
(
I2MTC
), Minneapolis, MN, May 6–9, pp.
707
712
.
136.
Barua
,
S.
,
Sparks
,
T.
, and
Liou
,
F.
,
2011
, “
Development of Low‐Cost Imaging System for Laser Metal Deposition Processes
,”
Rapid Prototyping J.
,
17
(
3
), pp.
203
210
.
137.
Krauss
,
H.
,
Eschey
,
C.
, and
Zaeh
,
M. F.
,
2012
, “
Thermography for Monitoring the Selective Laser Melting Process
,”
Solid Freeform Fabrication Symposium
(
SFF
), Austin, TX, Aug. 6–8, pp.
999
1014
.https://sffsymposium.engr.utexas.edu/Manuscripts/2012/2012-76-Krauss.pdf
138.
Rieder
,
H.
,
Dillhöfer
,
A.
,
Spies
,
M.
,
Bamberg
,
J.
, and
Hess
,
T.
,
2014
, “
Online Monitoring of Additive Manufacturing Processes Using Ultrasound
,”
11th European Conference on Non-Destructive Testing
(
ECNDT
), Prague, Czech Republic, Oct. 6–10, pp.
6
10
.http://www.ndt.net/events/ECNDT2014/app/content/Paper/259_Spies.pdf
139.
Krauss
,
H.
,
Zeugner
,
T.
, and
Zaeh
,
M. F.
,
2014
, “
Layerwise Monitoring of the Selective Laser Melting Process by Thermography
,”
Phys. Procedia
,
56
, pp.
64
71
.
140.
Melvin
,
L. S.
, III
,
Das
,
S.
, and
Beaman
,
S.
,
1994
, “
Video Microscopy of Selective Laser Sintering
,”
Solid Freeform Fabrication Symposium
(
SFF
), Austin, TX, Aug. 8–10, pp.
34
41
.https://sffsymposium.engr.utexas.edu/Manuscripts/1994/1994-05-Melvin.pdf
141.
Purtonen
,
T.
,
Kalliosaari
,
A.
, and
Salminen
,
A.
,
2014
, “
Monitoring and Adaptive Control of Laser Processes
,”
Phys. Procedia
,
56
, pp.
1218
1231
.
142.
Tapia
,
G.
, and
Elwany
,
A.
,
2014
, “
A Review on Process Monitoring and Control in Metal-Based Additive Manufacturing
,”
ASME J. Manuf. Sci. Eng.
,
136
(
6
), p.
060801
.
143.
Foster
,
B. K.
,
Reutzel
,
E. W.
,
Nassar
,
A. R.
,
Dickman
,
C. J.
, and
Hall
,
B. T.
,
2015
, “
A Brief Survey of Sensing for Metal-Based Powder Bed Fusion Additive Manufacturing
,”
Proc. SPIE
,
9489
, pp.
1
9
.
144.
Reutzel
,
E. W.
, and
Nassar
,
A. R.
,
2015
, “
A Survey of Sensing and Control Systems for Machine and Process Monitoring of Directed-Energy, Metal-Based Additive Manufacturing
,”
Rapid Prototyping J.
,
21
(
2
), pp.
159
167
.
145.
Everton
,
S. K.
,
Hirsch
,
M.
,
Stravroulakis
,
P.
,
Leach
,
R. K.
, and
Clare
,
A. T.
,
2016
, “
Review of In-Situ Process Monitoring and In-Situ Metrology for Metal Additive Manufacturing
,”
Mater. Des.
,
95
, pp.
431
445
.
146.
Grasso
,
M.
, and
Colosimo
,
B. M.
,
2017
, “
Process Defects and In Situ Monitoring Methods in Metal Powder Bed Fusion: A Review
,”
Meas. Sci. Technol.
,
28
(
4
), p.
044005
.
147.
Grasso
,
M.
,
Laguzza
,
V.
,
Semeraro
,
Q.
, and
Colosimo
,
B.
,
2016
, “
In-Process Monitoring of Selective Laser Melting: Spatial Detection of Defects Via Image Data Analysis
,”
ASME J. Manuf. Sci. Eng.
,
139
(
5
), p.
051001
.
148.
Mani
,
M.
,
Lane
,
B. M.
,
Donmez
,
M. A.
,
Feng
,
S. C.
, and
Moylan
,
S. P.
,
2017
, “
A Review on Measurement Science Needs for Real-Time Control of Additive Manufacturing Metal Powder Bed Fusion Processes
,”
Int. J. Prod. Res.
,
55
(
5
), pp.
1400
1418
.
You do not currently have access to this content.