Computational models for simulating physical phenomena during laser-based powder bed fusion additive manufacturing (L-PBF AM) processes are essential for enhancing our understanding of these phenomena, enable process optimization, and accelerate qualification and certification of AM materials and parts. It is a well-known fact that such models typically involve multiple sources of uncertainty that originate from different sources such as model parameters uncertainty, or model/code inadequacy, among many others. Uncertainty quantification (UQ) is a broad field that focuses on characterizing such uncertainties in order to maximize the benefit of these models. Although UQ has been a center theme in computational models associated with diverse fields such as computational fluid dynamics and macro-economics, it has not yet been fully exploited with computational models for advanced manufacturing. The current study presents one among the first efforts to conduct uncertainty propagation (UP) analysis in the context of L-PBF AM. More specifically, we present a generalized polynomial chaos expansions (gPCE) framework to assess the distributions of melt pool dimensions due to uncertainty in input model parameters. We develop the methodology and then employ it to validate model predictions, both through benchmarking them against Monte Carlo (MC) methods and against experimental data acquired from an experimental testbed.

References

1.
Tapia
,
G.
, and
Elwany
,
A.
,
2014
, “
A Review on Process Monitoring and Control in Metal-Based Additive Manufacturing
,”
ASME J. Manuf. Sci. Eng.
,
136
(
6
), p.
060801
.
2.
Ranjan
,
R.
,
Samant
,
R.
, and
Anand
,
S.
,
2017
, “
Integration of Design for Manufacturing Methods With Topology Optimization in Additive Manufacturing
,”
ASME J. Manuf. Sci. Eng.
,
139
(
6
), p.
061007
.
3.
Grasso
,
M.
,
Laguzza
,
V.
,
Semeraro
,
Q.
, and
Colosimo
,
B. M.
,
2017
, “
In-Process Monitoring of Selective Laser Melting: Spatial Detection of Defects Via Image Data Analysis
,”
ASME J. Manuf. Sci. Eng.
,
139
(
5
), p.
051001
.
4.
Khairallah
,
S. A.
,
Anderson
,
A. T.
,
Rubenchik
,
A.
, and
King
,
W. E.
,
2016
, “
Laser Powder-Bed Fusion Additive Manufacturing: Physics of Complex Melt Flow and Formation Mechanisms of Pores, Spatter, and Denudation Zones
,”
Acta Mater.
,
108
, pp.
36
45
.
5.
King
,
W.
,
Anderson
,
A. T.
,
Ferencz
,
R. M.
,
Hodge
,
N. E.
,
Kamath
,
C.
, and
Khairallah
,
S. A.
,
2015
, “
Overview of Modelling and Simulation of Metal Powder Bed Fusion Process at Lawrence Livermore National Laboratory
,”
Mater. Sci. Technol.
,
31
(
8
), pp.
957
968
.
6.
Mahesh
,
M.
,
Shaw
,
F.
,
Brandon
,
L.
,
Alkan
,
D.
,
Shawn
,
M.
, and
Ronnie
,
F.
,
2015
,
Measurement Science Needs for Real-Time Control of Additive Manufacturing Powder Bed Fusion Processes
,
US Department of Commerce, National Institute of Standards and Technology
, Gaithersburg, MD.
7.
Donghua
,
D.
, and
Dongdong
,
G.
,
2014
, “
Thermal Behavior and Densification Mechanism During Selective Laser Melting of Copper Matrix Composites: Simulation and Experiments
,”
Mater. Des.
,
55
, pp.
482
491
.
8.
Olaf
,
R.
,
2010
,
Cellular Design for Laser Freeform Fabrication
,
Cuvillier Göttingen
, Göttingen, Germany.
9.
Trapp
,
J.
,
Rubenchik
,
A. M.
,
Guss
,
G.
, and
Matthews
,
M. J.
,
2017
, “
In Situ Absorptivity Measurements of Metallic Powders During Laser Powder-Bed Fusion Additive Manufacturing
,”
Appl. Mater. Today
,
9
, pp.
341
349
.
10.
National Institute of Standards and Technology
,
2013
, “
Measurement Science Roadmap for Metal-Based Additive Manufacturing
,” National Institute of Standards and Technology, Gaithersburg, MD, Workshop Summary Report.
11.
Markl
,
M.
, and
Körner
,
C.
,
2016
, “
Multiscale Modeling of Powder Bed–Based Additive Manufacturing
,”
Annu. Rev. Mater. Res.
,
46
(
1
), pp.
93
123
.
12.
Matsumoto
,
M.
,
Shiomi
,
M.
,
Osakada
,
K.
, and
Abe
,
F.
,
2002
, “
Finite Element Analysis of Single Layer Forming on Metallic Powder Bed in Rapid Prototyping by Selective Laser Processing
,”
Int. J. Mach. Tools Manuf.
,
42
(
1
), pp.
61
67
.
13.
Panwisawas
,
C.
,
Qiu
,
C.
,
Anderson
,
M. J.
,
Sovani
,
Y.
,
Turner
,
R. P.
,
Attallah
,
M. M.
,
Brooks
,
J. W.
, and
Basoalto
,
H. C.
,
2017
, “
Mesoscale Modelling of Selective Laser Melting: Thermal Fluid Dynamics and Microstructural Evolution
,”
Comput. Mater. Sci.
,
126
, pp.
479
490
.
14.
Gustavo
,
T.
,
Saad
,
K.
,
Manyalibo
,
M.
,
Wayne
,
E. K.
, and
Alaa
,
E.
,
2017
, “
Gaussian Process-Based Surrogate Modeling Framework for Process Planning in Laser Powder-Bed Fusion Additive Manufacturing of 316l Stainless Steel
,”
Int. J. Adv. Manuf. Technol.
,
94
(9–12), pp. 3591–3603.
15.
Ye
,
Q.
, and
Chen
,
S.
,
2017
, “
Numerical Modeling of Metal-Based Additive Manufacturing Using Level Set Methods
,”
ASME J. Manuf. Sci. Eng.
,
139
(
7
), p.
071019
.
16.
National Research Council,
2012
,
Assessing the Reliability of Complex Models: Mathematical and Statistical Foundations of Verification, Validation, and Uncertainty Quantification
,
National Academies Press
, Washington, DC.
17.
Ralph
,
C. S.
,
2013
,
Uncertainty Quantification: Theory, Implementation, and Applications
, volume
12
,
Siam
18.
AnthonyO'Hagan
,
2013
, “
Polynomial Chaos: A Tutorial and Critique From a Statistician's Perspective
,”
SIAM/ASA J. Uncertainty Quantif.
,
20
, pp.
1
20
.
19.
Eagar
,
T. W.
, and
Tsai
,
N. S.
,
1983
, “
Temperature Fields Produced by Traveling Distributed Heat Sources
,”
Weld. J.
,
62
(
12
), pp.
346
355
.http://files.aws.org/wj/supplement/WJ_1983_12_s346.pdf
20.
Kamath
,
C.
,
2016
, “
Data Mining and Statistical Inference in Selective Laser Melting
,”
Int. J. Adv. Manuf. Technol.
,
86
(
5–8
), pp.
1659
1677
.
21.
King
,
W. E.
,
Anderson
,
A. T.
,
Ferencz
,
R. M.
,
Hodge
,
N. E.
,
Kamath
,
C.
,
Khairallah
,
S. A.
, and
Rubenchik
,
A. M.
,
2015
, “
Laser Powder Bed Fusion Additive Manufacturing of Metals; Physics, Computational, and Materials Challenges
,”
Appl. Phys. Rev.
,
2
(
4
), p.
041304
.
22.
Kamath
,
C.
,
El-dasher
,
B.
,
Gallegos
,
G. F.
,
King
,
W. E.
, and
Sisto
,
A.
,
2014
, “
Density of Additively-Manufactured, 316l Ss Parts Using Laser Powder-Bed Fusion at Powers Up to 400 w
,”
Int. J. Adv. Manuf. Technol.
,
74
(
1–4
), pp.
65
78
.
23.
Bonifaz
,
E. A.
,
2000
, “
Finite Element Analysis of Heat Flow in Single-Pass Arc Welds
,”
Weld. J. New York
,
79
(
5
), p.
121
.http://img2.aws.org/wj/supplement/05-2000-BONIFAZ-s.pdf
24.
Ion
,
J. C.
,
2002
, “
Laser Transformation Hardening
,”
Surf. Eng.
,
18
(
1
), pp.
14
31
.
25.
Van Elsen
,
M.
,
Baelmans
,
M.
,
Mercelis
,
P.
, and
Kruth
,
J.-P.
,
2007
, “
Solutions for Modelling Moving Heat Sources in a Semi-Infinite Medium and Applications to Laser Material Processing
,”
Int. J. Heat Mass Transfer
,
50
(
23–24
), pp.
4872
4882
.
26.
Karayagiz
,
K.
,
Elwany
,
A.
,
Tapia
,
G.
,
Franco
,
B.
,
Johnson
,
L.
,
Ma
,
J.
,
Karaman
,
I.
, and
Arroyave
,
R.
,
2018
, “
Numerical and Experimental Analysis of Heat Distribution in the Laser Powder Bed Fusion of Ti-6 Al-4 v
,”
IISE Trans.
(epub).
27.
Michaleris
,
P.
,
2014
, “
Modeling Metal Deposition in Heat Transfer Analyses of Additive Manufacturing Processes
,”
Finite Elem. Anal. Des.
,
86
, pp.
51
60
.
28.
Schilp
,
J.
,
Seidel
,
C.
,
Krauss
,
H.
, and
Weirather
,
J.
,
2014
, “
Investigations on Temperature Fields During Laser Beam Melting by Means of Process Monitoring and Multiscale Process Modelling
,”
Adv. Mech. Eng.
,
6
, p.
217584
.
29.
Pal
,
D.
,
Patil
,
N.
,
Zeng
,
K.
, and
Stucker
,
B.
,
2014
, “
An Integrated Approach to Additive Manufacturing Simulations Using Physics Based, Coupled Multiscale Process Modeling
,”
ASME J. Manuf. Sci. Eng.
,
136
(
6
), p.
061022
.
30.
Foroozmehr
,
A.
,
Badrossamay
,
M.
,
Foroozmehr
,
E.
, and
Golabi
,
S.
,
2016
, “
Finite Element Simulation of Selective Laser Melting Process Considering Optical Penetration Depth of Laser in Powder Bed
,”
Mater. Des.
,
89
, pp.
255
263
.
31.
Bourell
,
D. L.
,
Leu
,
M. C.
, and
Rosen
,
D. W.
,
2009
,
Roadmap for Additive Manufacturing: Identifying the Future of Freeform Processing
,
University of Texas at Austin
,
Austin, TX
.
32.
Frazier
,
W. E.
,
2010
, “
Direct Digital Manufacturing of Metallic Components: Vision and Roadmap
,”
Direct Digital Manufacturing of Metallic Components: Affordable, Durable, and Structurally Efficient Airframes
, Navy Metalworking Center,
Solomons Island, MD
.
33.
Serguei
,
K.
,
Eric
,
B.
,
Rémy
,
G.
,
Fischer
,
P.
, and
Locher
,
M.
,
2004
, “
3D Fe Simulation for Temperature Evolution in the Selective Laser Sintering Process
,”
Int. J. Mach. Tools Manuf.
,
44
(
2–3
), pp.
117
123
.
34.
Roberts
,
I. A.
,
Wang
,
C. J.
,
Esterlein
,
R.
,
Stanford
,
M.
, and
Mynors
,
D. J.
,
2009
, “
A Three-Dimensional Finite Element Analysis of the Temperature Field During Laser Melting of Metal Powders in Additive Layer Manufacturing
,”
Int. J. Mach. Tools Manuf.
,
49
(
12–13
), pp.
916
923
.
35.
Gürtler
,
F.-J.
,
Karg
,
M.
,
Leitz
,
K.-H.
, and
Schmidt
,
M.
,
2013
, “
Simulation of Laser Beam Melting of Steel Powders Using the Three-Dimensional Volume of Fluid Method
,”
Phys. Procedia
,
41
, pp.
881
886
.
36.
Tapia
,
G.
,
Elwany
,
A. H.
, and
Sang
,
H.
,
2016
, “
Prediction of Porosity in Metal-Based Additive Manufacturing Using Spatial Gaussian Process Models
,”
Addit. Manuf.
,
12
, pp.
282
290
.
37.
Aboutaleb
,
A. M.
,
Bian
,
L.
,
Elwany
,
A.
,
Shamsaei
,
N.
,
Thompson
,
S. M.
, and
Tapia
,
G.
,
2017
, “
Accelerated Process Optimization for Laser-Based Additive Manufacturing by Leveraging Similar Prior Studies
,”
IISE Trans.
,
49
(
1
), pp.
31
44
.
38.
Kennedy
,
M. C.
, and
O'Hagan
,
A.
,
2001
, “
Bayesian Calibration of Computer Models
,”
J. R. Stat. Soc. Ser. B
,
63
(
3
), pp.
425
464
.
39.
Wiener
,
N.
,
1938
, “
The Homogeneous Chaos
,”
Am. J. Math.
,
60
(
4
), pp.
897
936
.
40.
Najm
,
H. N.
,
2009
, “
Uncertainty Quantification and Polynomial Chaos Techniques in Computational Fluid Dynamics
,”
Annu. Rev. Fluid Mech.
,
41
(
1
), pp.
35
52
.
41.
Knio
,
O. M.
, and
Le Maitre
,
O. P.
,
2006
, “
Uncertainty Propagation in Cfd Using Polynomial Chaos Decomposition
,”
Fluid Dyn. Res.
,
38
(
9
), pp.
616
640
.
42.
Serhat
,
H.
,
Robert W
,
W.
, and
Rafael
,
P.
,
2006
, “
A Non-Intrusive Polynomial Chaos Method for Uncertainty Propagation in CFD Simulations
,”
AIAA
Paper No. 2006-891.
43.
Blatman
,
G.
, and
Sudret
,
B.
,
2010
, “
An Adaptive Algorithm to Build Up Sparse Polynomial Chaos Expansions for Stochastic Finite Element Analysis
,”
Probab. Eng. Mech.
,
25
(
2
), pp.
183
197
.
44.
Prabhakar
,
A.
,
Fisher
,
J.
, and
Bhattacharya
,
R.
,
2010
, “
Polynomial Chaos-Based Analysis of Probabilistic Uncertainty in Hypersonic Flight Dynamics
,”
J. Guid. Control Dyn.
,
33
(
1
), pp.
222
234
.
45.
Gorguluarslan
,
R. M.
,
Choi
,
S.-K.
, and
Saldana
,
C. J.
,
2017
, “
Uncertainty Quantification and Validation of 3D Lattice Scaffolds for Computer-Aided Biomedical Applications
,”
J. Mech. Behav. Biomed. Mater.
,
71
, pp.
428
440
.
46.
Xiu
,
D.
, and
Karniadakis
,
G. E.
,
2002
, “
The Wiener–Askey Polynomial Chaos for Stochastic Differential Equations
,”
SIAM J. Sci. Comput.
,
24
(
2
), pp.
619
644
.
47.
Giovanni
,
S.
,
2004
,
Orthogonal Functions
,
Dover Publications
,
Mineola, NY
.
48.
Zou
,
H.
, and
Hastie
,
T.
,
2005
, “
Regularization and Variable Selection Via the Elastic Net
,”
J. R. Stat. Soc.: Ser. B
,
67
(
2
), pp.
301
320
.
49.
Friedman
,
J.
,
Hastie
,
T.
, and
Tibshirani
,
R.
,
2010
, “
Regularization Paths for Generalized Linear Models Via Coordinate Descent
,”
J. Stat. Software
,
33
(
1
), pp. 1–22.https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2929880/
50.
Hsu
,
C-W.
,
Chang
,
C-C.
, and
Lin
,
C-J.
,
2003
, “
A Practical Guide to Support Vector Classification
,” Department of Computer Science and Information Engineering, National Taiwan University, Taipei.
51.
Owen
,
A. B.
,
2013
, “
Variance Components and Generalized Sobol'indices
,”
SIAM/ASA J. Uncertainty Quantif.
,
1
(
1
), pp.
19
41
.
52.
Sudret
,
B.
,
2008
, “
Global Sensitivity Analysis Using Polynomial Chaos Expansions
,”
Reliab. Eng. Syst. Saf.
,
93
(
7
), pp.
964
979
.
53.
Bratley
,
P.
, and
Fox
,
B. L.
,
1988
, “
Algorithm 659: Implementing Sobol's Quasirandom Sequence Generator
,”
ACM Trans. Math. Software
,
14
(
1
), pp.
88
100
.
54.
Chen
,
W.
,
Baghdasaryan
,
L.
,
Buranathiti
,
T.
, and
Cao
,
J.
,
2004
, “
Model Validation Via Uncertainty Propagation and Data Transformations
,”
AIAA J.
,
42
(
7
), pp.
1406
1415
.
55.
Richard
,
G. H.
, and
Timothy
,
G. T.
,
1999
,
Statistical Validation of Engineering and Scientific Models: Background
,
Sandia National Laboratories
,
Albuquerque, NM
, Report No. SAND99-1256.
56.
George
,
E. P. B.
, and
David
,
R.
,
1964
, “
Cox. An Analysis of Transformations
,”
J. R. Stat. Soc. Ser. B
,
26
(2), pp.
211
252
.
57.
Irwin
,
J.
,
Reutzel
,
E. W.
,
Michaleris
,
P.
,
Keist
,
J.
, and
Nassar
,
A. R.
,
2016
, “
Predicting Microstructure From Thermal History During Additive Manufacturing for Ti-6al-4v
,”
ASME J. Manuf. Sci. Eng.
,
138
(
11
), p.
111007
.
You do not currently have access to this content.