A novel additive manufacturing algorithm was developed to increase the consistency of three-dimensional (3D) printed curvilinear or conformal patterns on freeform surfaces. The algorithm dynamically and locally compensates the nozzle location with respect to the pattern geometry, motion direction, and topology of the substrate to minimize lagging or leading during conformal printing. The printing algorithm was implemented in an existing 3D printing system that consists of an extrusion-based dispensing module and an XYZ-stage. A dispensing head is fixed on a Z-axis and moves vertically, while the substrate is installed on an XY-stage and moves in the x–y plane. The printing algorithm approximates the printed pattern using nonuniform rational B-spline (NURBS) curves translated directly from a 3D model. Results showed that the proposed printing algorithm increases the consistency in the width of the printed patterns. It is envisioned that the proposed algorithm can facilitate nonplanar 3D printing using common and commercially available Cartesian-type 3D printing systems.

References

1.
Ahn
,
B. Y.
,
Duoss
,
E. B.
,
Motala
,
M. J.
,
Guo
,
X.
,
Park
,
S. I.
,
Xiong
,
Y.
,
Yoon
,
J.
,
Nuzzo
,
R. G.
,
Rogers
,
J. A.
, and
Lewis
,
J. A.
,
2009
, “
Omnidirectional Printing of Flexible, Stretchable, and Spanning Silver Microelectrodes
,”
Science
,
323
(
5921
), pp.
1590
1593
.
2.
Sun
,
K.
,
Wei
,
T.-S.
,
Ahn
,
B. Y.
,
Seo
,
J. Y.
,
Dillon
,
S. J.
, and
Lewis
,
J. A.
,
2013
, “
3D Printing of Interdigitated Li-Ion Microbattery Architectures
,”
Adv. Mater.
,
25
(
33
), pp.
4539
4543
.
3.
Vatani
,
M.
,
Lu
,
Y.-F.
,
Lee
,
K.-S.
,
Kim
,
H.-C.
, and
Choi
,
J.-W.
,
2013
, “
Direct-Write Stretchable Sensors Using Single-Walled Carbon Nanotube/Polymer Matrix
,”
ASME J. Electron. Packag.
,
135
(
1
), p.
011009
.
4.
Vatani
,
M.
,
Engeberg
,
E. D.
, and
Choi
,
J. W.
,
2013
, “
Force and Slip Detection With Direct-Write Compliant Tactile Sensors Using Multi-Walled Carbon Nanotube/Polymer Composites
,”
Sens. Actuators, A
,
195
, pp.
90
97
.
5.
Choi
,
J.-W.
,
Vatani
,
M.
, and
Engeberg
,
E. D.
,
2013
, “
Direct-Write of Multi-Layer Tactile Sensors
,”
13th International Conference on Control, Automation and Systems (ICCAS)
, Gwangju, South Korea, pp.
164
168
.
6.
Jiang
,
C. P.
,
Huang
,
J. R.
, and
Hsieh
,
M. F.
,
2011
, “
Fabrication of Synthesized PCL-PEG-PCL Tissue Engineering Scaffolds Using an Air Pressure-Aided Deposition System
,”
Rapid Prototyping J.
,
17
(
4
), pp.
288
297
.
7.
Khalil
,
S.
,
Nam
,
J.
, and
Sun
,
W.
,
2005
, “
Multi-Nozzle Deposition for Construction of 3D Biopolymer Tissue Scaffolds
,”
Rapid Prototyping J.
,
11
(
1
), pp.
9
17
.
8.
Malone
,
E.
, and
Lipson
,
H.
,
2009
, “
Multi-Material Freeform Fabrication of Active Systems
,”
ASME
Paper No. ESDA2008-59313.
9.
Mironov
,
V.
,
Boland
,
T.
,
Trusk
,
T.
,
Forgacs
,
G.
, and
Markwald
,
R. R.
,
2003
, “
Organ Printing: Computer-Aided Jet-Based 3D Tissue Engineering
,”
Trends Biotechnol.
,
21
(
4
), pp.
157
161
.
10.
Geng
,
L.
,
Feng
,
W.
,
Hutmacher
,
D. W.
,
Wong
,
Y. S.
,
Loh
,
H. T.
, and
Fuh
,
J. Y. H.
,
2005
, “
Direct Writing of Chitosan Scaffolds Using a Robotic System
,”
Rapid Prototyping J.
,
11
(
2
), pp.
90
97
.
11.
Ahn
,
B. Y.
,
Lorang
,
D. J.
,
Duossab
,
E. B.
, and
Lewis
,
J. A.
,
2010
, “
Direct-Write Assembly of Microperiodic Planar and Spanning ITO Microelectrodes
,”
Chem. Commun.
,
46
(
38
), pp.
7118
7120
.
12.
Adams
,
J. J.
,
Duoss
,
E. B.
,
Malkowski
,
T. F.
,
Motala
,
M. J.
,
Ahn
,
B. Y.
,
Nuzzo
,
R. G.
,
Bernhard
,
J. T.
, and
Lewis
,
J. A.
,
2011
, “
Conformal Printing of Electrically Small Antennas on Three-Dimensional Surfaces
,”
Adv. Mater.
,
23
(
11
), pp.
1335
1340
.
13.
Castillo
,
S.
,
Muse
,
D.
,
Medina
,
F.
,
MacDonald
,
E.
, and
Wicker
,
R.
,
2009
, “
Electronics Integration in Conformal Substrates Fabricated With Additive Layered Manufacturing
,”
Solid Freeform Fabrication Symposium
, Austin, TX, pp.
730
737
.
14.
Sager
,
B.
,
2006
, “
Stereolithography Characterization for Surface Finish Improvement: Inverse Design Methods for Process Planning
,” Ph.D. dissertation, Georgia Institute of Technology, Atlanta, GA.
15.
Sager
,
B.
, and
Rosen
,
D. W.
,
2008
, “
Use of Parameter Estimation for Stereolithography Surface Finish Improvement
,”
Rapid Prototyping J.
,
14
(
4
), pp.
213
220
.
16.
Pandey
,
P. M.
,
Venkata Reddy
,
N.
, and
Dhande
,
S. G.
,
2003
, “
Improvement of Surface Finish by Staircase Machining in Fused Deposition Modeling
,”
J. Mater. Process. Technol.
,
132
(
1–3
), pp.
323
331
.
17.
Mason
,
A.
,
2006
, “
Multi-Axis Hybrid Rapid Prototyping Using Fusion Deposition Modeling
,” Master's thesis, Ryerson University, Toronto, ON, Canada.
18.
Jacobs
,
P. F.
,
1995
,
Stereolithography and Other RP&M Technologies: From Rapid Prototyping to Rapid Tooling
,
Society of Manufacturing Engineers
, New York.
19.
Pan
,
Y.
,
Zhao
,
X.
,
Zhou
,
C.
, and
Chen
,
Y.
,
2012
, “
Smooth Surface Fabrication in Mask Projection Based Stereolithography
,”
J. Manuf. Processes
,
14
(
4
), pp.
460
470
.
20.
Pan
,
Y.
, and
Yong
,
C.
,
2016
, “
Meniscus Process Optimization for Smooth Surface Fabrication in Stereolithography
,”
Addit. Manuf.
,
12
, pp.
321
333
.
21.
McLean
,
M. A.
,
Shannon
,
G. J.
, and
Steen
,
W. M.
,
1997
, “
Laser Generating Metallic Components
,”
11th International Symposium on Gas Flow and Chemical Lasers and High-Power Laser Conference
, Vol. 3092, pp.
753
757
.
22.
Bourell
,
D. L.
,
Leu
,
M. C.
, and
Rosen
,
D. W.
,
2009
, “
Roadmap for Additive Manufacturing: Identifying the Future of Freeform Processing
,” The University of Texas at Austin, Austin, TX.
23.
Dutta
,
B.
,
Palaniswamy
,
S.
,
Choi
,
J.
,
Song
,
L. J.
, and
Mazumder
,
J.
,
2011
, “
Additive Manufacturing by Direct Metal Deposition
,”
Adv. Mater. Processes
,
169
(
5
), pp.
33
36
.https://www.asminternational.org/documents/10192/1895560/amp16905p33.pdf/d5669e78-19ec-4fbd-b1ab-90298c62a0c7
24.
Choi
,
J.
, and
Chang
,
Y.
,
2006
, “
Analysis of Laser Control Effects for Direct Metal Deposition Process
,”
J. Mech. Sci. Technol.
,
20
(
10
), pp.
1680
1690
.
25.
Ruan
,
J.
,
Tang
,
L.
,
Liou
,
F. W.
, and
Landers
,
R. G.
,
2010
, “
Direct Three-Dimensional Layer Metal Deposition
,”
ASME J. Manuf. Sci. Eng.
,
132
(
6
), p.
064502
.
26.
Milewski
,
J. O.
,
Lewis
,
G. K.
,
Thoma
,
D. J.
,
Keel
,
G. I.
,
Nemec
,
R. B.
, and
Reinert
,
R. A.
,
1998
, “
Directed Light Fabrication of a Solid Metal Hemisphere Using 5-Axis Powder Deposition
,”
J. Mater. Process. Technol.
,
75
(
1–3
), pp.
165
172
.
27.
Chakraborty
,
D.
,
Reddy
,
B. A.
, and
Choudhury
,
A. R.
,
2008
, “
Extruder Path Generation for Curved Layer Fused Deposition Modeling
,”
Comput. Aided Des.
,
40
(
2
), pp.
235
243
.
28.
Vatani
,
M.
,
Engeberg
,
E. D.
, and
Choi
,
J.-W.
,
2015
, “
Conformal Direct-Print of Piezoresistive Polymer/Nanocomposites for Compliant Multi-Layer Tactile Sensors
,”
Addit. Manuf.
,
7
, pp.
73
82
.
29.
Vatani
,
M.
, and
Choi
,
J.-W.
,
2017
, “
Direct-Print Photopolymerization for 3D Printing
,”
Rapid Prototyping J.
,
23
(
2
), pp.
337
343
.
30.
Sanchez Dancausa
,
P. P.
,
Masa-Campos
,
J. L.
,
Sanchez Olivares
,
P.
, and
Garcia Marin
,
E.
,
2016
, “
Omnidirectional Conformal Patch Antenna at S-Band With 3D Printed Technology
,”
Prog. Electromagn. Res. C
,
64
, pp.
43
50
.
31.
Chen
,
X. B.
,
2007
, “
Modeling of Rotary Screw Fluid Dispensing Processes
,”
ASME J. Electron. Packag.
,
129
(
2
), pp.
172
178
.
32.
Kuhn
,
M.
,
Napporn
,
T.
,
Meunier
,
M.
,
Vengallatore
,
S.
, and
Therriault
,
D.
,
2008
, “
Direct-Write Microfabrication of Single-Chamber Micro Solid Oxide Fuel Cells
,”
J. Micromech. Microeng.
,
18
(
1
), p.
015005
.
33.
Chang
,
C. C.
,
Boland
,
E. D.
,
Williams
,
S. K.
, and
Hoying
,
J. B.
,
2011
, “
Direct-Write Bioprinting Three-Dimensional Biohybrid Systems for Future Regenerative Therapies
,”
J. Biomed. Mater. Res. Part B
,
98B
(
1
), pp.
160
170
.
34.
Spong
,
M. W.
,
Hutchinson
,
S.
, and
Vidyasagar
,
M.
,
2006
,
Robot Modeling and Control
,
Wiley
,
New York
.
35.
Ma
,
Y. L.
, and
Hewitt
,
W. T.
,
2003
, “
Point Inversion and Projection for NURBS Curve and Surface: Control Polygon Approach
,”
Comput. Aided Geom. Des.
,
20
(
2
), pp.
79
99
.
36.
IGES/PDES Organization, 2006, “
The Initial Graphics Exchange Specification (IGES) Version 5.x (Draft)
,” Initial Graphic Exchange Specification/Product Data Exchange using STEP Organization.
37.
Piegl
,
L.
, and
Tiller
,
W.
,
1995
,
The Nurbs Book
,
Springer-Verlag
,
New York
, pp.
376
382
.
You do not currently have access to this content.