In this study, ultrafine grained Al5052/Cu multilayered composite has been produced by accumulative roll bonding (ARB) and fracture properties have been studied using plane stress fracture toughness. The fracture toughness has been investigated for the unprocessed specimens, primary sandwich and first, second, and third cycles of ARB process by ASTM E561 and compact tension (CT) specimens. Also, the microstructure and mechanical properties have been investigated using optical microscopy, scanning electron microscopy, uniaxial tensile tests, and microhardness measurements. The value of plane stress fracture toughness for the ultrafine grained Al5052/Cu composite increased by increasing the number of ARB cycles, continuously from the primary sandwich to end of the third cycle. The maximum value of 59.1 MPa m1/2 has been obtained that it is about 2.77 and 4.05 more than Al5052 and pure Cu (unprocessed specimens). This phenomenon indicated that ARB process and the addition of copper to aluminum alloy could increase the value of fracture toughness to more than three times. The results showed that by increasing the ARB cycles, the thickness of copper layers reduced and after the fifth cycle, the excellent uniformity of Cu layers achieved. By increasing the number of ARB cycles, the microhardness of both aluminum and copper layers have been significantly increased. The tensile strength of the sandwich has been enhanced continually, and the maximum value of 566.5 MPa has been achieved.

References

1.
Karajibani
,
E.
,
Hashemi
,
R.
, and
Sedighi
,
M.
,
2017
, “
Forming Limit Diagram of Aluminum-Copper Two-Layer Sheets: Numerical Simulations and Experimental Verifications
,”
Int. J. Adv. Manuf. Technol.
,
90
(
9–12
), pp.
2713
2722
.
2.
Doley
,
J. K.
, and
Kore
,
S. D.
,
2016
, “
A Study on Friction Stir Welding of Dissimilar Thin Sheets of Aluminum Alloys AA 5052–AA 6061
,”
ASME J. Manuf. Sci. Eng.
,
138
(
11
), p.
114502
.
3.
Marandi
,
F.
,
Jabbari
,
A.
,
Sedighi
,
M.
, and
Hashemi
,
R.
,
2017
, “
An Experimental, Analytical, and Numerical Investigation of Hydraulic Bulge Test in Two-Layer Al–Cu Sheets
,”
ASME J. Manuf. Sci. Eng.
,
139
(
3
), p.
031005
.
4.
Hashemi
,
R.
, and
Karajibani
,
E.
,
2016
, “
Forming Limit Diagram of Al-Cu Two-Layer Metallic Sheets Considering the Marciniak and Kuczynski Theory
,”
Proc. Inst. Mech. Eng., Part B
,
232
(
5
), pp.
848
854
.
5.
Shingu
,
P.
,
Ishihara
,
K.
,
Otsuki
,
A.
, and
Daigo
,
I.
,
2001
, “
Nano-Scaled Multi-Layered Bulk Materials Manufactured by Repeated Pressing and Rolling in the Cu–Fe System
,”
Mater. Sci. Eng.: A
,
304–306
, pp.
399
402
.
6.
Saito
,
Y.
,
Tsuji
,
N.
,
Utsunomiya
,
H.
,
Sakai
,
T.
, and
Hong
,
R.
,
1998
, “
Ultra-Fine Grained Bulk Aluminum Produced by Accumulative Roll-Bonding (ARB) Process
,”
Scr. Mater.
,
39
(
9
), pp.
1221
1227
.
7.
Saito
,
Y.
,
Utsunomiya
,
H.
,
Tsuji
,
N.
, and
Sakai
,
T.
,
1999
, “
Novel Ultra-High Straining Process for Bulk Materials—Development of the Accumulative Roll-Bonding (ARB) Process
,”
Acta Mater.
,
47
(
2
), pp.
579
583
.
8.
Jamaati
,
R.
,
Toroghinejad
,
M. R.
,
Dutkiewicz
,
J.
, and
Szpunar
,
J. A.
,
2012
, “
Investigation of Nanostructured Al/Al2O3 Composite Produced by Accumulative Roll Bonding Process
,”
Mater. Des.
,
35
, pp.
37
42
.
9.
Min
,
G.
,
Lee
,
J.-M.
,
Kang
,
S.-B.
, and
Kim
,
H.-W.
,
2006
, “
Evolution of Microstructure for Multilayered Al/Ni Composites by Accumulative Roll Bonding Process
,”
Mater. Lett.
,
60
(
27
), pp.
3255
3259
.
10.
Mehr
,
V. Y.
,
Toroghinejad
,
M. R.
, and
Rezaeian
,
A.
,
2014
, “
Mechanical Properties and Microstructure Evolutions of Multilayered Al–Cu Composites Produced by Accumulative Roll Bonding Process and Subsequent Annealing
,”
Mater. Sci. Eng.: A
,
601
, pp.
40
47
.
11.
Eizadjou
,
M.
,
Talachi
,
A. K.
,
Manesh
,
H. D.
,
Shahabi
,
H. S.
, and
Janghorban
,
K.
,
2008
, “
Investigation of Structure and Mechanical Properties of Multi-Layered Al/Cu Composite Produced by Accumulative Roll Bonding (ARB) Process
,”
Compos. Sci. Technol.
,
68
(
9
), pp.
2003
2009
.
12.
Dehsorkhi
,
R. N.
,
Qods
,
F.
, and
Tajally
,
M.
,
2011
, “
Investigation on Microstructure and Mechanical Properties of Al–Zn Composite During Accumulative Roll Bonding (ARB) Process
,”
Mater. Sci. Eng.: A
,
530
, pp.
63
72
.
13.
Wu
,
K.
,
Chang
,
H.
,
Maawad
,
E.
,
Gan
,
W.
,
Brokmeier
,
H.
, and
Zheng
,
M.
,
2010
, “
Microstructure and Mechanical Properties of the Mg/Al Laminated Composite Fabricated by Accumulative Roll Bonding (ARB)
,”
Mater. Sci. Eng.: A
,
527
(
13–14
), pp.
3073
3078
.
14.
Shabani
,
A.
,
Toroghinejad
,
M. R.
, and
Shafyei
,
A.
,
2012
, “
Fabrication of Al/Ni/Cu Composite by Accumulative Roll Bonding and Electroplating Processes and Investigation of Its Microstructure and Mechanical Properties
,”
Mater. Sci. Eng.: A
,
558
, pp.
386
393
.
15.
Yang
,
D.
,
Cizek
,
P.
,
Hodgson
,
P.
, and
Wen
,
C.
,
2010
, “
Ultrafine Equiaxed-Grain Ti/Al Composite Produced by Accumulative Roll Bonding
,”
Scr. Mater.
,
62
(
5
), pp.
321
324
.
16.
Jamaati
,
R.
,
Amirkhanlou
,
S.
,
Toroghinejad
,
M. R.
, and
Niroumand
,
B.
,
2011
, “
Effect of Particle Size on Microstructure and Mechanical Properties of Composites Produced by ARB Process
,”
Mater. Sci. Eng.: A
,
528
(
4–5
), pp.
2143
2148
.
17.
Hohenwarter
,
A.
, and
Pippan
,
R.
,
2011
, “
Fracture Toughness Evaluation of Ultrafine-Grained Nickel
,”
Scr. Mater.
,
64
(
10
), pp.
982
985
.
18.
Sabirov
,
I.
,
Valiev
,
R. Z.
,
Semenova
,
I. P.
, and
Pippan
,
R.
,
2010
, “
Effect of Equal Channel Angular Pressing on the Fracture Behavior of Commercially Pure Titanium
,”
Metall. Mater. Trans. A
,
41
(
3
), pp.
727
733
.
19.
Mohammadi
,
B.
,
Tavoli
,
M.
, and
Djavanroodi
,
F.
,
2014
, “
Effects of Constrained Groove Pressing (CGP) on the Plane Stress Fracture Toughness of Pure Copper
,”
Struct. Eng. Mech.
,
52
(
5
), pp.
957
969
.
20.
Darban
,
H.
,
Mohammadi
,
B.
, and
Djavanroodi
,
F.
,
2016
, “
Effect of Equal Channel Angular Pressing on Fracture Toughness of Al-7075
,”
Eng. Failure Anal.
,
65
, pp.
1
10
.
21.
Mourad
,
A.
,
Alghafri
,
M.
,
Zeid
,
O. A.
, and
Maiti
,
S.
,
2005
, “
Experimental Investigation on Ductile Stable Crack Growth Emanating From Wire-Cut Notch in AISI 4340 Steel
,”
Nucl. Eng. Des.
,
235
(
6
), pp.
637
647
.
22.
Tayyebi
,
M.
, and
Eghbali
,
B.
,
2013
, “
Study on the Microstructure and Mechanical Properties of Multilayer Cu/Ni Composite Processed by Accumulative Roll Bonding
,”
Mater. Sci. Eng.: A
,
559
, pp.
759
764
.
23.
Reihanian
,
M.
, and
Naseri
,
M.
,
2016
, “
An Analytical Approach for Necking and Fracture of Hard Layer During Accumulative Roll Bonding (ARB) of Metallic Multilayer
,”
Mater. Des.
,
89
, pp.
1213
1222
.
24.
Amirkhanlou
,
S.
,
Ketabchi
,
M.
,
Parvin
,
N.
,
Khorsand
,
S.
, and
Bahrami
,
R.
,
2013
, “
Accumulative Press Bonding: A Novel Manufacturing Process of Nanostructured Metal Matrix Composites
,”
Mater. Des.
,
51
, pp.
367
374
.
25.
Mozaffari
,
A.
,
Manesh
,
H. D.
, and
Janghorban
,
K.
,
2010
, “
Evaluation of Mechanical Properties and Structure of Multilayered Al/Ni Composites Produced by Accumulative Roll Bonding (ARB) Process
,”
J. Alloys Compd.
,
489
(
1
), pp.
103
109
.
26.
Fong
,
K. S.
,
Tan
,
M. J.
,
Ng
,
F. L.
,
Danno
,
A.
, and
Chua
,
B. W.
,
2017
, “
Microstructure Stability of a Fine-Grained AZ31 Magnesium Alloy Processed by Constrained Groove Pressing During Isothermal Annealing
,”
ASME J. Manuf. Sci. Eng.
,
139
(
8
), p.
081007
.
27.
Abdolvand
,
H.
,
Faraji
,
G.
,
Givi
,
M. B.
,
Hashemi
,
R.
, and
Riazat
,
M.
,
2015
, “
Evaluation of the Microstructure and Mechanical Properties of the Ultrafine Grained Thin-Walled Tubes Processed by Severe Plastic Deformation
,”
Met. Mater. Int.
,
21
(
6
), pp.
1068
1073
.
28.
Rahmatabadi
,
D.
, and
Hashemi
,
R.
,
2017
, “
Experimental Evaluation of Forming Limit Diagram and Mechanical Properties of Nano/Ultra-Fine Grained Aluminum Strips Fabricated by Accumulative Roll Bonding
,”
Int. J. Mater. Res.
,
108
(
12
), pp.
1036
1044
.
29.
Alizadeh
,
M.
, and
Samiei
,
M.
,
2014
, “
Fabrication of Nanostructured Al/Cu/Mn Metallic Multilayer Composites by Accumulative Roll Bonding Process and Investigation of Their Mechanical Properties
,”
Mater. Des.
,
56
, pp.
680
684
.
30.
Mehr
,
V. Y.
,
Rezaeian
,
A.
, and
Toroghinejad
,
M. R.
,
2015
, “
Application of Accumulative Roll Bonding and Anodizing Process to Produce Al–Cu–Al2O3 Composite
,”
Mater. Des.
,
70
, pp.
53
59
.
31.
Rahmatabadi
,
D.
,
Tayyebi
,
M.
,
Hashemi
,
R.
, and
Faraji
,
G.
,
2018
, “
Microstructure and Mechanical Properties of Al/Cu/Mg Laminated Composite Sheets Produced by the ARB Proces
,”
Int. J. Miner., Metall., Mater.
,
25
(
5
), pp.
564
572
.
32.
Pineau
,
A.
,
Benzerga
,
A. A.
, and
Pardoen
,
T.
,
2015
, “
Failure of Metals—Part III: Fracture and Fatigue of Nanostructured Metallic Materials
,”
Acta Mater.
,
107
, pp.
508
544
.
33.
Latapie
,
A.
, and
Farkas
,
D.
,
2004
, “
Molecular Dynamics Investigation of the Fracture Behavior of Nanocrystalline α-Fe
,”
Phys. Rev. B
,
69
(
13
), p.
134110
.
34.
Somekawa
,
H.
, and
Mukai
,
T.
,
2005
, “
Effect of Grain Refinement on Fracture Toughness in Extruded Pure Magnesium
,”
Scr. Mater.
,
53
(
9
), pp.
1059
1064
.
35.
Cherukuri
,
B.
,
Nedkova
,
T. S.
, and
Srinivasan
,
R.
,
2005
, “
A Comparison of the Properties of SPD-Processed AA-6061 by Equal-Channel Angular Pressing, Multi-Axial Compressions/Forgings and Accumulative Roll Bonding
,”
Mater. Sci. Eng.: A
,
410–411
, pp.
394
397
.
36.
Ekiz
,
E. H.
,
Lach
,
T. G.
,
Averback
,
R. S.
,
Mara
,
N. A.
,
Beyerlein
,
I. J.
,
Pouryazdan
,
M.
,
Hahn
,
H.
, and
Bellon
,
P.
,
2014
, “
Microstructural Evolution of Nanolayered Cu–Nb Composites Subjected to High-Pressure Torsion
,”
Acta Mater.
,
72
, pp.
178
191
.
37.
Tsuji
,
N.
,
Saito
,
Y.
,
Utsunomiya
,
H.
, and
Tanigawa
,
S.
,
1999
, “
Ultra-Fine Grained Bulk Steel Produced by Accumulative Roll-Bonding (ARB) Process
,”
Scr. Mater.
,
40
(
7
), pp.
795
800
.
38.
Huang
,
X.
,
Tsuji
,
N.
,
Hansen
,
N.
, and
Minamino
,
Y.
,
2003
, “
Microstructural Evolution During Accumulative Roll-Bonding of Commercial Purity Aluminum
,”
Mater. Sci. Eng.: A
,
340
(
1–2
), pp.
265
271
.
39.
Hansen
,
N.
,
Huang
,
X.
,
Ueji
,
R.
, and
Tsuji
,
N.
,
2004
, “
Structure and Strength After Large Strain Deformation
,”
Mater. Sci. Eng.: A
,
387–389
, pp.
191
194
.
40.
Rahmatabadi
,
D.
,
Hashemi
,
R.
,
Mohammadi
,
B.
, and
Shojaee
,
T.
,
2017
, “
Experimental Evaluation of the Plane Stress Fracture Toughness for Ultra-Fine Grained Aluminum Specimens Prepared by Accumulative Roll Bonding Process
,”
Mater. Sci. Eng.: A
,
708
, pp.
301
310
.
41.
Wang
,
Y.
, and
Ma
,
E.
,
2004
, “
Three Strategies to Achieve Uniform Tensile Deformation in a Nanostructured Metal
,”
Acta Mater.
,
52
(
6
), pp.
1699
1709
.
42.
Rahmatabadi
,
D.
,
Tayyebi
,
M.
,
Hashemi
,
R.
, and
Faraji
,
G.
,
2018
, “
Evaluation of Microstructure and Mechanical Properties of Al5052/Cu Multi-Layered Composite Fabricated by the ARB Process
,”
Powder Metall. Met. Ceram.
(in press).
You do not currently have access to this content.