State-of-the-art measurement technologies, such as 3D laser scanners, provide new opportunities for knowledge discovery and development of quality control (QC) strategies for complex manufacturing systems. These technologies can rapidly provide millions of data points to represent a manufactured part's surface. The resulting high-density (HD) datasets have a great potential to be used for inspecting parts for surface and feature abnormalities. The current use of these datasets for part inspection can be divided into two main categories: (1) extracting feature parameters, which does not complement the nature of these datasets as it wastes valuable data and (2) an ad hoc inspection process, where a visual representation of the data is manually analyzed, which tends to suffer from slow, inefficient, and inconsistent inspection results. To overcome these deficiencies, this paper proposes an adaptive generalized likelihood ratio (AGLR) technique to automate the surface defect inspection process using HD data. This paper presents the performance results of the proposed AGLR approach with respect to the probability of detecting varying size and magnitude defects in addition to the probability of false alarms. In addition, a formal approach for designing an optimal AGLR inspection system is proposed. Finally, simulation results are presented and analyzed to showcase the performance gains of the AGLR approach versus a more traditional generalized likelihood ratio (GLR) approach.

References

1.
Wells
,
L. J.
,
Megahed
,
F. M.
,
Camelio
,
J. A.
, and
Woodall
,
W. H.
,
2012
, “
A Framework for Variation Visualization and Understanding in Complex Manufacturing Systems
,”
J. Intell. Manuf.
,
23
(
5
), pp.
2025
2036
.
2.
Martínez
,
S.
,
Cuesta
,
E.
,
Barreiro
,
J.
, and
Álvarez
,
B.
,
2010
, “
Analysis of Laser Scanning and Strategies for Dimensional and Geometrical Control
,”
Int. J. Adv. Manuf. Technol.
,
46
(
5–8
), pp.
621
629
.
3.
Brajlih
,
T.
,
Tasic
,
T.
,
Drstvensek
,
I.
,
Valentan
,
B.
,
Hadzistevic
,
M.
,
Pogacar
,
V.
,
Balic
,
J.
, and
Acko
,
B.
,
2011
, “
Possibilities of Using Three-Dimensional Optical Scanning in Complex Geometrical Inspection
,”
Strojniski Vestn./J. Mech. Eng.
,
57
(
11
), pp.
826
833
.
4.
Li
,
Y.
, and
Gu
,
P.
,
2004
, “
Free-Form Surface Inspection Techniques State of the Art Review
,”
Comput. Aided Des.
,
36
(
13
), pp.
1395
1417
.
5.
Ravishankar
,
S.
,
Dutt
,
H.
, and
Gurumoorthy
,
B.
,
2010
, “
Automated Inspection of Aircraft Parts Using a Modified ICP Algorithm
,”
Int. J. Adv. Manuf. Technol.
,
46
(
1–4
), pp.
227
236
.
6.
Audfray
,
N.
,
Mehdi-Souzani
,
C.
, and
Lartigue
,
C.
,
2013
, “
A Novel Approach for 3D Part Inspection Using Laser-Plane Sensors
,”
Proc. CIRP
,
10
, pp.
23
29
.
7.
Molleda
,
J.
,
Usamentiaga
,
R.
,
García
,
D. F.
,
Bulnes
,
F. G.
,
Espina
,
A.
,
Dieye
,
B.
, and
Smith
,
L. N.
,
2013
, “
An Improved 3D Imaging System for Dimensional Quality Inspection of Rolled Products in the Metal Industry
,”
Comput. Ind.
,
64
(
9
), pp.
1186
1200
.
8.
Chang
,
C. L.
, and
Chen
,
Y. H.
,
2005
, “
Measurements of Fillet Weld by 3D Laser Scanning System
,”
Int. J. Adv. Manuf. Technol.
,
25
(
5–6
), pp.
466
470
.
9.
Li
,
Y.
,
Li
,
Y. F.
,
Wang
,
Q. L.
,
Xu
,
D.
, and
Tan
,
M.
,
2010
, “
Measurement and Defect Detection of the Weld Bead Based on Online Vision Inspection
,”
IEEE Trans. Instrum. Meas.
,
59
(
7
), pp.
1841
1849
.
10.
Mohaghegh
,
K.
,
Sadeghi
,
M.
, and
Abdullah
,
A.
,
2007
, “
Reverse Engineering of Turbine Blades Based on Design Intent
,”
Int. J. Adv. Manuf. Technol.
,
32
(
9–10
), pp.
1009
1020
.
11.
Nguyen
,
H. C.
, and
Lee
,
B. R.
,
2014
, “
Laser-Vision-Based Quality Inspection System for Small-Bead Laser Welding
,”
Int. J. Precis. Eng. Manuf.
,
15
(
3
), pp.
415
423
.
12.
Prieto
,
F.
,
Redarce
,
T.
,
Lepage
,
R.
, and
Boulanger
,
P.
,
1998
, “
Visual System for Fast and Automated Inspection of 3D Parts
,”
Int. J. CAD/CAM Comput. Graphics
,
13
(
4
), pp.
211
227
.
13.
Morel
,
O.
,
Meriaudeau
,
F.
,
Stolz
,
C.
, and
Gorria
,
P.
,
2005
, “
Polarization Imaging Applied to 3D Reconstruction of Specular Metallic Surfaces
,”
Proc. SPIE
,
5679
, pp.
178
186
.
14.
Megahed
,
F.
,
Woodall
,
W.
, and
Camelio
,
J.
,
2011
, “
A Review and Perspective on Control Charting With Image Data
,”
J. Qual. Technol.
,
43
(
2
), pp.
83
98
.
15.
Jiang
,
B. C.
, and
Jiang
,
S. J.
,
1998
, “
Machine Vision Based Inspection of Oil Seals
,”
J. Manuf. Syst.
,
17
(
3
), pp.
159
166
.
16.
Jiang
,
B. C.
,
Wang
,
C. C.
, and
Liu
,
H. C.
,
2005
, “
Liquid Crystal Display Surface Uniformity Defect Inspection Using Analysis of Variance and Exponentially Weighted Moving Average Techniques
,”
Int. J. Prod. Res.
,
43
(
1
), pp.
67
80
.
17.
Tunák
,
M.
,
Linka
,
A.
, and
Volf
,
P.
,
2009
, “
Automatic Assessing and Monitoring of Weaving Density
,”
Fibers Polym.
,
10
(
6
), pp.
830
836
.
18.
Megahed
,
F. M.
,
Wells
,
L. J.
,
Camelio
,
J. A.
, and
Woodall
,
W. H.
,
2012
, “
A Spatiotemporal Method for the Monitoring of Image Data
,”
Qual. Reliab. Eng. Int.
,
28
(
8
), pp.
967
980
.
19.
Nacereddine
,
N.
,
Zelmat
,
M.
,
Belaïfa
,
S. S.
, and
Tridi
,
M.
,
2005
, “
Weld Defect Detection in Industrial Radiography Based Digital Image Processing
,”
ASME Int. J. Comput. Inf. Sci. Eng.
,
1
(
2
), pp.
162
165
.
20.
Wang
,
X.
,
Wong
,
B. S.
,
Tan
,
C.
, and
Tui
,
C. G.
,
2011
, “
Automated Crack Detection for Digital Radiography Aircraft Wing Inspection
,”
Res. Nondestr. Eval.
,
22
(
2
), pp.
105
127
.
21.
Wells
,
L. J.
,
Megahed
,
F. M.
,
Niziolek
,
C. B.
,
Camelio
,
J. A.
, and
Woodall
,
W. H.
,
2013
, “
Statistical Process Monitoring Approach for High-Density Point Clouds
,”
J. Intell. Manuf.
,
24
(
6
), pp.
1267
1279
.
22.
Koch
,
K. R.
,
2009
, “
Identity of Simultaneous Estimates of Control Points and of Their Estimates by the Lofting Method for NURBS Surface Fitting
,”
Int. J. Adv. Manuf. Technol.
,
44
(
11–12
), pp.
1175
1180
.
23.
Tang
,
K
.,
1988
, “
Economic Design of Product Specifications for a Complete Inspection Plan
,”
Int. J. Prod. Res.
,
26
(
2
), pp.
203
217
.
24.
Hong
,
S. H.
,
Kim
,
S. B.
,
Kwon
,
H. M.
, and
Lee
,
M. K.
,
1998
, “
Economic Design of Screening Procedures When the Rejected Items are Reprocessed
,”
Eur. J. Oper. Res.
,
108
(
1
), pp.
65
73
.
25.
Feng
,
Q.
, and
Kapur
,
K. C.
,
2006
, “
Economic Development of Specifications for 100% Inspection Based on Asymmetric Quality Loss Functions
,”
IIE Trans.
,
38
(
8
), pp.
659
669
.
26.
Lorenzen
,
T. J.
, and
Vance
,
L. C.
,
1986
, “
The Economic Design of Control Charts: A Unified Approach
,”
Technometrics
,
28
(
1
), pp.
3
10
.
27.
Woodall
,
W. H.
,
1986
, “
Weaknesses of the Economic Design of Control Charts
,”
Technometrics
,
28
(
4
), pp.
408
409
.
You do not currently have access to this content.