Due to increasing demands for faster and faster manufacturing of new complex materials, such as casting of particulate composites, the determination of pumping pressures needed for particle-laden fluids through channels is critical. In particular, the increase in viscosity as a function of the particle volume fraction can lead to system malfunction, due to an inability to deliver necessary pressures to pump the more viscous fluid through the system. This paper studies the pressure gradient needed to maintain a given flow rate, explicitly as a function of the volume fraction of particles present in the fluid. It is also crucial to control voids in the casted products, which can be traced to air-entrainment, spurious internal reactions, dewetting, etc., which can be traced to high Reynolds numbers. Accordingly, an expression for the resulting Reynolds number as a function of the particle volume fraction and flow rate is also developed. Numerical examples are provided to illustrate the practical use of the derived relations to characterize the necessary pumping pressures for process-driven, particle-laden fluid flows.

References

1.
Wei
,
C.
, and
Dong
,
J.
,
2014
, “
Development and Modeling of Melt Electrohydrodynamic-Jet Printing of Phase-Change Inks for High-Resolution Additive Manufacturing
,”
ASME J. Manuf. Sci. Eng.
,
136
(
6
), p.
061010
.10.1115/1.4028483
2.
Onate
,
E.
,
Idelsohn
,
S. R.
,
Celigueta
,
M. A.
, and
Rossi
,
R.
,
2008
, “
Advances in the Particle Finite Element Method for the Analysis of Fluid-Multibody Interaction and Bed Erosion in Free Surface Flows
,”
Comput. Methods Appl. Mech. Eng.
,
197
(
19–20
), pp.
1777
1800
.10.1016/j.cma.2007.06.005
3.
Onate
,
E.
,
Celigueta
,
M. A.
,
Idelsohn
,
S. R.
,
Salazar
,
F.
, and
Suárez
,
B.
,
2011
, “
Possibilities of the Particle Finite Element Method for Fluid-Soil-Structure Interaction Problems
,”
Comput. Mech.
,
48
(
3
), pp.
307
318
.10.1007/s00466-011-0617-2
4.
Rojek
,
J.
,
Labra
,
C.
,
Su
,
O.
, and
Onate
,
E.
,
2012
, “
Comparative Study of Different Discrete Element Models and Evaluation of Equivalent Micromechanical Parameters
,”
Int. J. Solids Struct.
,
49
(
13
), pp.
1497
1517
.10.1016/j.ijsolstr.2012.02.032
5.
Carbonell
,
J. M.
,
Onate
,
E.
, and
Suarez
,
B.
,
2010
, “
Modeling of Ground Excavation With the Particle Finite Element Method
,”
J. Eng. Mech., ASCE
,
136
(
4
), pp.
455
463
.10.1061/(ASCE)EM.1943-7889.0000086
6.
Labra
,
C.
, and
Onate
,
E.
,
2009
, “
High-Density Sphere Packing for Discrete Element Method Simulations
,”
Commun. Numer. Methods Eng.
,
25
(
7
), pp.
837
849
.10.1002/cnm.1193
7.
Leonardi
,
A.
,
Wittel
,
F. K.
,
Mendoza
,
M.
, and
Herrmann
,
H. J.
,
2014
, “
Coupled DEM-LBM Method for the Free-Surface Simulation of Heterogeneous Suspensions
,”
Comput. Part. Mech.
,
1
(
1
), pp.
3
13
.10.1007/s40571-014-0001-z
8.
Cante
,
J.
,
Davalos
,
C.
,
Hernandez
,
J. A.
,
Oliver
,
J.
,
Jonsen
,
P.
,
Gustafsson
,
G.
, and
Haggblad
,
H. A.
,
2014
, “
PFEM-Based Modeling of Industrial Granular Flows
,”
Comput. Part. Mech.
,
1
(
1
), pp.
47
70
.10.1007/s40571-014-0004-9
9.
Rojek
,
J.
,
2014
, “
Discrete Element Thermomechanical Modeling of Rock Cutting With Valuation of Tool Wear
,”
Comput. Part. Mech.
,
1
(
1
), pp.
71
84
.10.1007/s40571-014-0008-5
10.
Onate
,
E.
,
Celigueta
,
M. A.
,
Latorre
,
S.
,
Casas
,
G.
,
Rossi
,
R.
, and
Rojek
,
J.
,
2014
, “
Lagrangian Analysis of Multiscale Particulate Flows With the Particle Finite Element Method
,”
Comput. Part. Mech.
,
1
(
1
), pp.
85
102
.10.1007/s40571-014-0012-9
11.
Bolintineanu
,
D. S.
,
Grest
,
G. S.
,
Lechman
,
J. B.
,
Pierce
,
F.
,
Plimpton
,
S J.
, and
Schunk
,
P. R.
,
2014
, “
Particle Dynamics Modeling Methods for Colloid Suspensions
,”
Comput. Part. Mech.
,
1
(
3
), pp.
321
356
.10.1007/s40571-014-0007-6
12.
Avci
,
B.
, and
Wriggers
,
P.
,
2012
, “
A DEM-FEM Coupling Approach for the Direct Numerical Simulation of 3D particulate Flows
,”
ASME J. Appl. Mech.
,
79
(
1
), p.
010901
.10.1115/1.4005093
13.
Zohdi
,
T. I.
,
2007
, “
Computation of Strongly Coupled Multifield Interaction in Particle-Fluid Systems
,”
Comput. Methods Appl. Mech. Eng.
,
196
(
37
), pp.
3927
3950
.10.1016/j.cma.2006.10.040
14.
Zohdi
,
T. I.
,
2014
, “
Embedded Electromagnetically Sensitive Particle Motion in Functionalized Fluids
,”
Comput. Part. Mech.
,
1
(
1
), pp.
27
45
.10.1007/s40571-014-0013-8
15.
Zohdi
,
T. I.
, and
Wriggers
,
P.
,
2008
,
Introduction to Computational Micromechanics
,
Springer
,
Berlin
10.1007/978-3-540-32360-0.
16.
Hinze
,
J. O.
,
1975
,
Turbulence
,
McGraw-Hill
,
New York
.
17.
Einstein
,
A.
,
1906
, “
A New Determination of Molecular Dimensions
,”
Ann. Phys.
,
19
(
4
), pp.
289
306
.
18.
Hashin
,
Z.
, and
Shtrikman
,
S.
,
1962
, “
On Some Variational Principles in Anisotropic and Nonhomogeneous Elasticity
,”
J. Mech. Phys. Solids
,
10
(
4
), pp.
335
342
.10.1016/0022-5096(62)90004-2
19.
Hashin
,
Z.
, and
Shtrikman
,
S.
,
1963
, “
A Variational Approach to the Theory of the Elastic Behaviour of Multiphase Materials
,”
J. Mech. Phys. Solids
,
11
(2), pp.
127
140
.10.1016/0022-5096(63)90060-7
20.
Hashin
,
Z.
,
1983
, “
Analysis of Composite Materials: A Survey
,”
ASME J. Appl. Mech.
,
50
(
3
), pp.
481
505
.10.1115/1.3167081
21.
Torquato
,
S.
,
2002
,
Random Heterogeneous Materials: Microstructure and Macroscopic
Properties
,
Springer
,
New York
10.1007/978-1-4757-6355-3.
22.
Hong
,
Y.
,
Zhou
,
J. G.
, and
Yao
,
D.
,
2014
, “
Porogen Templating Processes: An Overview
,”
ASME J. Manuf. Sci. Eng.
,
136
(
3
), p.
031013
.10.1115/1.4026899
23.
Kongsuwan
,
P.
,
Brandal
,
G.
, and
Yao
,
Y. L.
,
2015
, “
Laser Induced Porosity and Crystallinity Modification of a Bioactive Glass Coating on Titanium Substrates
,”
ASME J. Manuf. Sci. Eng.
,
137
(
3
), p.
031004
.10.1115/1.4029566
24.
Zohdi
,
T. I.
,
2013
, “
Numerical Simulation of Charged Particulate Cluster-Droplet Impact on Electrified Surfaces
,”
J. Comput. Phys.
,
233
, pp.
509
526
.10.1016/j.jcp.2012.09.012
25.
Zohdi
,
T. I.
,
2012
,
Dynamics of Charged Particulate Systems. Modeling, Theory and Computation
,
Springer
,
Heidelberg
.
26.
Zohdi
,
T. I.
,
2004
, “
A Computational Framework for Agglomeration in Thermo-Chemically Reacting Granular Flows
,”
Proc. R. Soc.
,
460
(
2052
), pp.
3421
3445
.10.1098/rspa.2004.1277
27.
Zohdi
,
T. I.
,
2005
, “
A Simple Model for Shear Stress Mediated Lumen Reduction in Blood Vessels
,”
Biomech. Model. Mechanobiol.
,
4
(
1
), pp.
57
61
.10.1007/s10237-004-0059-2
28.
Zohdi
,
T. I.
,
2014
, “
Mechanically-Driven Accumulation of Microscale Material at Coupled Solid-Fluid Interfaces in Biological Channels
,”
Proc. R. Soc. Interface
,
11
(
91
), p.
20130922
.
29.
Zohdi
,
T. I.
,
Holzapfel
,
G. A.
, and
Berger
,
S. A.
,
2004
, “
A Phenomenological Model for Atherosclerotic Plaque Growth and Rupture
,”
J. Theor. Biol.
,
227
(
3
), pp.
437
443
.10.1016/j.jtbi.2003.11.025
30.
Maxwell
,
J. C.
,
1867
, “
On the Dynamical Theory of Gases
,”
Philos. Trans. Soc. London
,
157
, pp.
49
88
.10.1098/rstl.1867.0004
31.
Maxwell
,
J. C.
,
1873
,
A Treatise on Electricity and Magnetism
, 3rd ed.,
Clarendon Press
,
Oxford, UK
.
32.
Rayleigh
,
J. W.
,
1892
, “
On the Influence of Obstacles Arranged in Rectangular Order Upon Properties of a Medium
,”
Philos. Mag.
32
, pp.
481
491
.
33.
Jikov
,
V. V.
,
Kozlov
,
S. M.
, and
Olenik
,
O. A.
,
1994
,
Homogenization of Differential Operators and Integral Functionals
,
Springer
,
Berlin
.
34.
Mura
,
T.
,
1993
,
Micromechanics of Defects in Solids
, 2nd ed.,
Kluwer Academic Publishers
,
Springer-Verlag, Berlin
.
35.
Markov
,
K. Z.
,
2000
, “
Elementary Micromechanics of Heterogeneous Media
,”
Heterogeneous Media: Micromechanics Modeling Methods and Simulations
,
K. Z.
Markov
, and
L.
Preziozi
, eds.,
Birkhauser
,
Boston, MA
, pp.
1
162
10.1007/978-1-4612-1332-1_1.
36.
Ghosh
,
S.
,
2011
,
Micromechanical Analysis and Multi-Scale Modeling Using the Voronoi Cell Finite Element Method
,
CRC Press/Taylor & Francis
,
Boca Raton, FL
10.1201/b10903.
37.
Ghosh
,
S.
, and
Dimiduk
,
D.
,
2011
,
Computational Methods for Microstructure-Property Relations
,
Springer
,
New York
.
38.
Abedian
,
B.
, and
Kachanov
,
M.
,
2010
, “
On the Effective Viscosity of Suspensions
,”
Int. J. Eng. Sci.
,
48
(
11
), pp.
962
965
.10.1016/j.ijengsci.2010.08.012
39.
Sevostianov
,
I.
, and
Kachanov
,
M.
,
2012
, “
Effective Properties of Heterogeneous Materials: Proper Application of the Non-Interaction and the “Dilute Limit” Approximations
,”
Int. J. Eng. Sci.
,
58
, pp.
124
128
.10.1016/j.ijengsci.2012.03.031
This content is only available via PDF.
You do not currently have access to this content.