Minimum quantity lubrication (MQL) is a promising alternative to conventional flood cooling to substantially reduce lubricant cost and converse energy. Literature survey shows lack of investigation on the influence of MQL on the residual stress profile in grinding process. Residual stress is an important attribute of machined components for its notable influences on fatigue life, corrosion resistance, and fracture strength. This study has presented a thorough experimental investigation on grinding force, temperature, surface roughness, and residual stress behavior in grinding of AISI 1018 steel under MQL, dry, and flood cooling conditions.

References

1.
Malkin
,
S.
,
1989
,
Grinding Technology: Theory and Applications of Machining With Abrasives
,
Ellis Howard Ltd. and Prentice Hall
, Englewood Cliffs, NJ.
2.
Autret
,
R.
, and
Liang
,
S.
,
2003
, “
Minimum Quantity Lubrication in Finish Hard Turning
,”
Proceedings of International Conference on Humanoid, Nano Technology, Information Technology, Communication and Control
,
Environment, and Management, Manila
,
Philippines
, Mar. 27–30, pp.
1
9
.
3.
Ji
,
X.
,
Zhang
,
X.
, and
Liang
,
S.
,
2012
, “
A New Approach to Predict Machining Force and Temperature With Minimum Quantity Lubrication
,”
ASME
Paper No. MSEC2012-7221, pp. 69–76.
4.
Shen
,
B.
, and
Shih
,
A.
,
2009
, “
Minimum Quantity Lubrication (MQL) Grinding Using Vitrified CBN Wheels
,”
Trans. NAMRI/SME
,
37
, pp.
129
136
.
5.
Ji
,
X.
,
Zhang
,
X.
,
Li
,
B.
, and
Liang
,
S.
,
2014
, “
Modeling of the Effects of Minimum Quantity Lubrication on Machining Force, Temperature, and Residual Stress
,”
Mach. Sci. Technol.
,
18
(
4
), pp.
547
564
.
6.
Silva
,
L.
,
Bianchi
,
E.
,
Catai
,
R.
,
Fusse
,
R.
, and
Franca
,
T.
,
2005
, “
Study on the Behavior of the Minimum Quantity Lubricant—MQL Technique Under Different Lubricating and Cooling Conditions When Grinding ABNT 4340 Steel
,”
J. Braz. Soc. Mech. Sci. Eng.
,
27
(
2
), pp.
192
199
.
7.
Silva
,
L.
,
Bianchi
,
E.
,
Fusse
,
R.
,
Catai
,
R.
,
Franca
,
T.
, and
Aguiar
,
P.
,
2007
, “
Analysis of Surface Integrity for Minimum Quantity Lubricant—MQL Grinding
,”
Int. J. Mach. Tools Manuf.
,
47
(
2
), pp.
412
418
.
8.
Li
,
C.
,
Hou
,
Y.
,
Xiu
,
S.
, and
Cai
,
G.
,
2008
, “
Application of Lubrication Theory to Near-Dry Green Grinding—Feasibility Analysis
,”
Adv. Mater. Res.
,
44–46
, pp.
135
142
.
9.
Shen
,
B
.,
2008
, “
Minimum Quantity Lubrication Grinding Using Nanofluids
,” Ph.D. thesis,
University of Michigan, Ann Arbor, MI
.
10.
Sadeghi
,
M.
,
Hadad
,
M.
,
Tawakoli
,
T.
, and
Emami
,
M.
,
2009
, “
Minimal Quantity Lubrication—MQL in Grinding of Ti-6Al-4V Titanium Alloy
,”
Int. J. Adv. Manuf. Technol.
,
44
, pp.
487
500
.
11.
Tawakoli
,
T.
,
Hadad
,
M.
,
Sadeghi
,
M.
,
Daneshi
,
A.
,
Stockert
,
S.
, and
Rasifard
,
A.
,
2009
, “
An Experimental Investigation of the Effects of Workpiece and Grinding Parameters on Minimum Quantity Lubrication—MQL Grinding
,”
Int. J. Mach. Tools Manuf.
,
49
(
12–13
), pp.
924
932
.
12.
Tawakoli
,
T.
,
Hadad
,
M.
, and
Sadeghi
,
M.
,
2010
, “
Influence of Oil Mist Parameters on Minimum Quantity Lubrication—MQL Grinding Process
,”
Int. J. Mach. Tools Manuf.
,
50
(
6
), pp.
521
531
.
13.
Tawakoli
,
T.
,
Hadad
,
M.
, and
Sadeghi
,
M.
,
2010
, “
Investigation on Minimum Quantity Lubricant-MQL Grinding of 100Cr6 Hardened Steel Using Different Abrasive and Coolant-Lubricant Types
,”
Int. J. Mach. Tools Manuf.
,
50
(
8
), pp.
698
708
.
14.
Hadad
,
M.
, and
Sadeghi
,
B.
,
2012
, “
Thermal Analysis of Minimum Quantity Lubrication-MQL Grinding Process
,”
Int. J. Mach. Tools Manuf.
,
63
, pp.
1
15
.
15.
Shao
,
Y.
, and
Liang
,
S.
,
2014
, “
Predictive Force Modeling in MQL (Minimum Quantity Lubrication) Grinding
,”
ASME
Paper No. MSEC2014-3971.
16.
Liang
,
S.
, and
Su
,
J.
,
2007
, “
Residal Stress Modeling in Orthogonal Machining
,”
CIRP Ann.
,
56
(
1
), pp.
65
68
.
17.
Jaeger
,
J
.,
1942
, “
Moving Sources of Heat and the Temperature at Sliding Contacts
,”
J. R. Soc. N. S. W.
,
84
(
21
), pp.
4316
4318
.
18.
Rowe
,
W.
,
2001
, “
Temperature Case Studies in Grinding Including an Inclined Heat Source Model
,”
Proc. Inst. Mech. Eng., Part B
,
215
(
4
), pp.
473
491
.
19.
Hecker
,
R.
, and
Liang
,
S.
,
2003
, “
Predictive Modeling of Surface Roughness in Grinding
,”
Int. J. Mach. Tools Manuf.
,
43
(
8
), pp.
755
761
.
20.
Balart
,
M.
,
Bouzina
,
A.
,
Edwards
,
L.
, and
Fitzpatrick
,
M.
,
2004
, “
The Onset of Tensile Residual Stresses in Grinding of Hardened Steels
,”
Mater. Sci. Eng., A
,
367
(
1–2
), pp.
132
142
.
21.
Fergani
,
O.
,
Shao
,
Y.
,
Lazoglu
,
I.
, and
Liang
,
S.
,
2014
, “
Temperature Effects on Grinding Residual Stress
,”
Procedia CIRP
,
14
, pp.
2
6
.
22.
Ding
,
Z.
,
Li
,
B.
,
Zou
,
P.
, and
Liang
,
S.
,
2014
, “
Material Phase Transformation During Grinding
,”
Adv. Mater. Res.
,
1052
, pp.
503
508
.
23.
Chen
,
X.
,
Rowe
,
W.
, and
McCormack
,
D.
,
2000
, “
Analysis of the Transitional Temperature for Tensile Residual Stress in Grinding
,”
J. Mater. Process. Technol.
,
107
(
1–3
), pp.
216
221
.
You do not currently have access to this content.