This experimental study investigates the effect of environmental loading and joining methods on the static and dynamic performance of lightweight multimaterial single-lap joints (SLJ). Joint adherend material combinations are divided into two groups; namely, composite-based and steel-based materials that include glass fiber reinforced polymer (GFRP), steel (St), aluminum (Al), and magnesium (Mg). A commercially available adhesive is selected for the study. Investigated joining methods include bonding-only, bolting-only, and hybrid bonding-and-bolting. Static performance is assessed by the load transfer capacity (LTC) of SLJ after they have been subjected to heat cycling at ambient level of relative humidity, or after heat cycling at high relative humidity. Dynamic performance is measured by durability life (in cycles) of SLJ test samples under a fixed dynamic load ratio in a tensile–tensile fatigue test, after they have been subjected to heat cycling and humidity. The cyclic test load fluctuated between 67.5% and 75% of the static LTC at ambient condition. Sample finding includes the significant effect of heat cycling at an ambient humidity level; it has tripled the LTC of bonded-only composite-to-composite SLJ, relative to their baseline LTC at ambient conditions. Detailed discussion of the results, observations, and conclusions are presented in this paper.

References

1.
Brockmann
,
W.
,
2009
,
Adhesive Bonding: Materials, Applications and Technology
,
Wiley-VCH
,
Wenham, MA
.
2.
Federal Aviation Administration
,
2012
, “
Advanced Composite Materials
,”
AMT Airframe Handbook
,
Federal Aviation Administration
,
Washington, DC
, Chap. 7.
3.
ASTM
,
2012
,
ASTM D907-12a Standard Terminology of Adhesives
,
ASTM International
,
West Conshohocken, PA
.
4.
Luo
,
A. A.
,
2002
, “
Magnesium: Current and Potential Automotive Applications
,”
JOM
,
54
(
2
), pp.
42
48
.10.1007/BF02701073
5.
Xu
,
S.
,
Thomson
,
J. P.
, and
Sahoo
,
M.
,
2004
, “
A Review on Stress Relaxation and Bolt Load Retention of Magnesium Alloys for Automotive Applications
,”
Can. Metall. Q.
,
43
(
4
), pp.
489
506
.10.1179/cmq.2004.43.4.489
6.
Pekguleryuz
,
M. O.
, and
Kaya
,
A. A.
,
2003
, “
Creep Resistant Magnesium Alloys for Powertrain Applications
,”
Adv. Eng. Mater.
,
5
(
12
), pp.
866
878
.10.1002/adem.200300403
7.
Jaglinski
,
T.
,
Nimityongskul
,
A.
,
Schmitz
,
R.
, and
Lakes
,
R. S.
,
2007
, “
Study of Bolt Load Loss in Bolted Aluminum Joints
,”
ASME J. Eng. Mater. Technol.
,
129
(
1
), pp.
48
54
.10.1115/1.2400262
8.
Chen
,
F. C.
,
Jones
,
J. W.
,
McGinn
,
T. A.
,
Kearns
,
J. E.
,
Nielsen
,
A. J.
, and
Allison
,
J. E.
,
1997
, “
Bolt-Load Retention and Creep of Die-Cast Magnesium Alloys
,”
SAE
Technical Paper No. 970325.10.4271/970325
9.
Kumano
,
H.
,
Sawa
,
T.
, and
Nitta
,
T.
,
1995
, “
The Characteristics of Bolted Joints Under Thermal Changes
,”
PVP
,
305
, pp.
125
132
.10.1299/kikaic.55.1100
10.
Fukuoka
,
T.
,
2005
, “
Finite Element Analysis of the Thermal and Mechanical Behaviors of a Bolted Joint
,”
ASME J. Pressure Vessel Technol.
,
127
(
4
), pp.
402
407
.10.1115/1.2042477
11.
Yokobori
,
T.
,
2001
, “
High Temperature Creep, Fatigue and Creep–Fatigue Interaction Engineering
,”
ASME J. Pressure Vessel Technol.
,
78
(11--12), pp.
903
908
.10.1016/S0308-0161(01)00105-3
12.
Ekh
,
J.
, and
Schon
,
J.
,
2006
, “
Load Transfer in Multirow, Single Shear, Composite-to-Aluminum Lap Joints
,”
Compos. Sci. Technol.
,
66
(
7–8
), pp.
875
885
.10.1016/j.compscitech.2005.08.015
13.
Pereira
,
A. B.
, and
de Morais
,
A. B.
,
2003
, “
Strength of Adhesively Bonded Stainless Steel Joints
,”
Int. J. Adhes. Adhes.
,
23
(
4
), pp.
315
322
.10.1016/S0143-7496(03)00049-6
14.
Sawa
,
T.
,
Nagai
,
T.
,
Iwamoto
,
T.
, and
Kuramoto
,
H.
,
2009
, “
A Study on Evaluation of Impact Strength of Adhesive Joints Subjected to Impact Shear Loadings
,”
ASME
Paper No. IMECE2008-68464. 10.1115/IMECE2008-68464
15.
Lucic
,
M.
,
Stoic
,
A.
, and
Kopac
,
J.
,
2006
, “
Investigation of Aluminum Single Lap Adhesively Bonded Joints
,”
J. Achiev. Mater. Manuf. Eng.
,
15
(
1–2
), pp.
79
87
.
16.
Mallick
,
P. K.
, and
Bhambure
,
S.
,
2011
, “
Analysis of Single Lap Adhesive Joints Between Magnesium and Other Structural Automotive Materials
,”
SAE Int. J. Mater. Manuf.
,
4
(
1
), pp.
175
180
.10.4271/2011-01-0076
17.
Chen
,
H.-S.
,
2001
, “
The Static and Fatigue Strength of Bolted Joints in Composites With Hygrothermal Cycling
,”
Compos. Struct.
,
52
(
3–4
), pp.
295
306
.10.1016/S0263-8223(01)00022-8
18.
Kelly
,
G.
,
2005
, “
Load Transfer in Hybrid (Bonded/Bolted) Composite Single-Lap Joints
,”
Compos. Struct.
,
69
(
1
), pp.
35
43
.10.1016/j.compstruct.2004.04.016
19.
Sekine
,
N.
,
Nakada
,
M.
,
Miyano
,
Y.
,
Kuraishi
,
A.
, and
Tsai
,
S. W.
,
2003
, “
Prediction of Fatigue Life for CFRP/Metal Bolted Joint Under Temperature Conditions
,”
JSME Int. J., Ser. A
,
46
(
3
), pp.
484
489
.10.1299/jsmea.46.484
20.
Miyano
,
Y.
,
Nakada
,
M.
, and
Sekine
,
N.
,
2010
, “
Life Prediction of CFRP/Metal Bolted Joint Under Water Absorption Condition
,”
J. Compos. Mater.
,
44
(
20
), pp.
2393
2411
.10.1177/0021998310372697
21.
Ferreira
,
J. A. M
,
Reis
,
P. N.
,
Costa
,
J. D. M.
, and
Richardson
,
M. O. W.
,
2002
, “
Fatigue Behavior of Composite Adhesive Lap Joints
,”
Compos. Sci. Technol.
,
62
(
10–11
), pp.
1373
1379
.10.1016/S0266-3538(02)00082-9
22.
Erpolat
,
S.
,
Ashcroft
,
I. A.
,
Crocombe
,
A. D.
, and
Abdel
,
W.
,
2004
, “
A Study of Adhesively Bonded Joints Subjected to Constant and Variable Amplitude Fatigue
,”
Int. J. Fatigue
,
26
(
11
), pp.
1189
1196
.10.1016/j.ijfatigue.2004.03.011
23.
Nassar
,
S. A.
, and
Kazemi
,
A.
,
2014
, “
Clamp Load Decay due to Material Creep of Lightweight-Material Joints Under Cyclic Temperature
,”
ASME J. Manuf. Sci. Eng.
(in press).10.1115/1.4029830
24.
Strongwell
,
2013
,
Extren: Fiberglass Structural Shapes and Plate
,
Strongwell Corporation
,
Bristol, VA
.
25.
ASM, 1982
, “
ASM Material Data Sheet
,”
ASM Material Data Sheet ASTM A36
, ASM International.
26.
Magnesium Elektron Service & Innovation in Magnesium
, “
Elektron Tooling Plate
,”
Magnesium Elektron Innovation
,
Manchester, UK
, Datasheet No. 484.
27.
ASM
,
1991
, “
ASM Material Data Sheet
,” ASM Material Data Sheet Aluminum 6061-T6; 6061-T651, ASM International.
28.
ASTM D2651-01,
2001
,
Standard Guide for Preparation of Metal Surfaces for Adhesive Bonding
,
American Society for Testing and Materials (ASTM)
,
West Conshohocken, PA
.
29.
Loctite
,
2015
, “
Technical Data Sheet
,” Loctite Hysol® Product E-20HP, Vol. 19, Loctite.
30.
Díaz
,
A.
,
2012
, “
Predicting Failure Initiation in Structural Adhesive Joints
,” Centro de Investigación en Materiales Avanzados S.C., Chihuahua, Mexico, Report No: AFRL-OSR-VA-TR-2012-1124.
31.
ASTM D1002
,
2010
,
Standard Test Method for Apparent Shear Strength of Single-Lap-Joint Adhesively Bonded Metal Specimens by Tension Loading (Metal-to-Metal)
,
American Society for Testing and Materials (ASTM)
,
West Conshohocken, PA
.
32.
Wu
,
X.
,
Hao
,
H.
,
Zhang
,
G.
,
Renault
,
C.
, and
Frendberg
,
D.
,
1999
, “
Variation in Autobody Adhesive Curing Process
,”
SAE
Technical Paper No. 1999-01-0997.10.4271/1999-01-0997
33.
Quini
,
J. G.
, and
Marinnuci
,
G.
,
2012
, “
Polyurethane Structural Adhesives Applied in Automotive Composite Joints
,”
Mater. Res.
,
15
(
3
), pp.
434
439
.10.1590/S1516-14392012005000042
34.
Arrabal
,
R.
,
Pardo
,
A.
,
Merino
,
M. C.
,
Merino
,
S.
,
Mohedano
,
M.
, and
Casajús
,
P.
,
2011
, “
Corrosion Behavior of Mg/Al Alloys in High Humidity Atmospheres
,”
Mater. Corros.
,
62
(
4
), pp.
326
334
.10.1002/maco.200905538
You do not currently have access to this content.