To better understand keyhole plasma arc (PA) and help improve the process, the authors recently observed that the electron flow may deviate from its ionized arc plasma which is electrically neutral. This phenomenon has been referred to as the arc separability which provides a better way to understand the arc fundamentally. Hence, in this study the authors designed an innovative experimental system to measure/record the heat and pressure from the separated arc components—arc plasma and electron flow. An algorithm was proposed to calculate/derive the distribution of the pressure from its bulk measurements that are easy to obtain accurately. Experiments were conducted to study the effects of welding parameters on the heat and pressure in the arc components. It is found that for the constrained PA, the heat applied into the work-piece through the arc plasma exceeds that from the electron flow and this dominance increases as the current increases. However, for the heat from the electron flow, the constraint on the arc does not change it significantly as can be seen from the comparison with that in free gas tungsten arc (GTA). For the pressure in PA, the arc plasma plays the dominant role in determining its amplitude, while the electron flow only primarily contributes to the distribution.

References

1.
Craig
,
E.
,
1988
, “
The Plasma Arc Welding—A Review
,”
Weld. J.
,
67
(
2
), pp.
19
25
.
2.
Tomsic
,
M.
, and
Barhorst
,
S.
,
1984
, “
Keyhole Plasma Arc Welding of Aluminum With Variable Polarity Power
,”
Weld. J.
,
63
(
2
), pp.
25
32
.
3.
Williamson
,
M.
,
2011
, “
Manufacturing for Space
,”
Eng. Technol.
,
6
(
3
), pp.
44
47
.10.1049/et.2011.0307
4.
Irving
,
B.
,
1997
, “
Why Aren't Airplanes Welded?
,”
Weld. J.
,
76
(
1
), pp.
31
41
.
5.
Irving
,
B.
,
1992
, “
Plasma Arc Welding Takes on the Advanced Solid Rocket Motor
,”
Weld. J.
,
71
(
12
), pp.
49
50
.
6.
Nunes
,
A. C.
,
Bayless
,
E. O.
,
Jones
,
C. S.
III
,
Munafo
,
P. M.
,
Biddle
,
A. P.
, and
Wilson
,
W. A.
,
1984
, “
Variable Polarity Plasma Arc Welding on the Space Shuttle External Tank
,”
Weld. J.
,
63
(
9
), pp.
27
35
.
7.
Keanini
,
R. G.
, and
Rubinsky
,
B.
,
1990
, “
Plasma Arc Welding Under Normal and Zero Gravity
,”
Weld. J.
,
69
(
6
), pp.
41
50
.
8.
Brien
,
A. O.
,
2004
,
Welding Handbook Vol. 2: Welding Process Part 1
, 9th ed.,
American Welding Society
,
Miami, FL
.
9.
Zhang
,
Y. M.
, and
Zhang
,
S. B.
,
1999
, “
Observation of the Keyhole During Plasma Arc Welding
,”
Weld. J.
,
75
(
2
), pp.
53
59
.
10.
Qian
,
K.
, and
Zhang
,
Y. M.
,
2014
, “
Bilinear Model Predictive Control of Plasma Keyhole Pipe Welding Process
,”
ASME J. Manuf. Sci. Eng.
,
136
(
3
), p.
031002
.10.1115/1.4025337
11.
Li
,
X. L.
, and
Zhang
,
Y. M.
,
2014
, “
Predictive Control for Manual Plasma Arc Pipe Welding
,”
ASME J. Manuf. Sci. Eng.
,
136
(
4
), p.
041017
.10.1115/1.4027627
12.
Chen
,
S. J.
,
Jiang
,
F.
,
Lu
,
Y. S.
, and
Zhang
,
Y. M.
,
2013
, “
Separation of Plasma and Current in Electrical Arc
,”
7th Asia Pacific IIW International Congress 2013
, Singapore Management University, Singapore, July 9.
13.
Chen
,
S. J.
,
Jiang
,
F.
,
Lu
,
Y. S.
, and
Zhang
,
Y. M.
,
2013
, “
Separation of Arc Plasma and Current in Electrical Arc
,”
Weld. J.
,
93
(
7
), pp.
253
261
.
14.
Haddad
,
G. N.
, and
Farmer
,
A. J. D.
,
1985
, “
Temperature Measurements in Gas Tungsten Arcs
,”
Weld. J.
,
64
(
12
), pp.
339
342
.
15.
Key
,
J. F.
,
Chan
,
J. W.
, and
Mcilwaine
,
M. E.
,
1983
, “
Process Variable Influence on Arc Temperature Distribution
,”
Weld. J.
,
62
(
7
), pp.
179
184
.
16.
Farmer
,
A. J. D.
, and
Haddad
,
G. N.
,
1984
, “
Local Thermodynamic Equilibrium in Free‐Burning Arcs in Argon
,”
Appl. Phys. Lett.
,
45
(
1
), pp.
24
25
.10.1063/1.94990
17.
Shik
,
K. T.
,
1972
, “
Anode Current Density in High-Current Pulse Arcs
,”
J. Appl. Phys.
,
43
(
12
), pp.
5002
5005
.10.1063/1.1661060
18.
Nestor
,
O. H.
,
1962
, “
Heat Intensity and Current Density Distributions at the Anode of High Current Inert Gas Arcs
,”
J. Appl. Phys.
,
33
(
5
), pp.
1638
1648
.10.1063/1.1728803
19.
Beaudet
,
R.
, and
Drouet
,
M. G.
,
1974
, “
Technique, Applicable to Circuit Brealers for the Measurement of the Spatial Distribution of the Current in an Arc
,”
IEEE Trans. Power Appar. Syst.
,
93
(
4
), pp.
1054
1062
.10.1109/TPAS.1974.294049
20.
Drouet
,
M. G.
,
1987
, “
Measurement of the Current Distribution at the Anode of an Arc Burning in a Gas and in a Vacuum
,”
J. Phys. E: Sci. Instrum.
,
20
(
6
), pp.
625
626
.10.1088/0022-3735/20/6/009
21.
Burleigh
,
T. D.
, and
Eagar
,
T. W.
,
1983
, “
Measurement of the Force Exerted by a Welding Arc
,”
Metall. Trans. A
,
14
(
6
), pp.
1223
1224
.10.1007/BF02670460
22.
Marks
,
H. S.
,
Beilis
,
I. I.
, and
Boxman
,
R. L.
,
2009
, “
Measurement of the Vacuum Arc Plasma Force
,”
IEEE Trans. Plasma Sci.
,
37
(
7
), pp.
1332
1337
.10.1109/TPS.2009.2022011
23.
Chabrerie
,
J. P.
,
Devautour
,
J.
,
Gouega
,
A. M.
, and
Teste
,
P.
,
1994
, “
A Sensitive Device for the Measurement of the Force Exerted by an Arc on the Electrodes
,”
Proceedings of the Fortieth
IEEE
Holm Conference on Electrical Contacts, Oct. 17–19, pp.
261
267
.10.1109/HOLM.1994.636846
24.
Jiang
,
Y.
,
Xu
,
B. S.
,
Lu
,
Y. H.
,
Liu
,
C. L.
, and
Liu
,
M.
,
2011
, “
Experimental Analysis on the Variable Polarity Plasma Arc Pressure
,”
Chin. J. Mech. Eng.
,
24
(
4
), pp.
1
6
.10.3901/CJME.2011.04.607
25.
Zhang
,
W. J.
,
Liu
,
Y. K.
,
Wang
,
X.
, and
Zhang
,
Y. M.
,
2012
, “
Characterization of Three-Dimensional Weld Pool Surface in Gas Tungsten Arc Welding
,”
Weld. J.
,
91
(
7
), pp.
195
203
.
26.
Zhang
,
W. J.
, and
Zhang
,
Y. M.
,
2012
, “
Modeling of Human Welder Response to 3D Weld Pool Surface: Part I—Principles
,”
Weld. J.
,
91
(
11
), pp.
310
318
.
27.
Wang
,
H. X.
,
Wei
,
Y. H.
, and
Yang
,
C. L.
,
2007
, “
Numerical Simulation of Variable Polarity Vertical-Up Plasma Arc Welding Process
,”
Comput. Mater. Sci.
,
38
(
4
), pp.
571
587
.10.1016/j.commatsci.2006.03.017
28.
Zhang
,
T.
,
Wu
,
C. S.
, and
Feng
,
Y. H.
,
2011
, “
Numerical Analysis of Heat Transfer and Fluid Flow in Keyhole Plasma Arc Welding
,”
Numer. Heat Transfer, Part A
,
60
(
8
), pp.
685
698
.10.1080/10407782.2011.616851
29.
Wu
,
C. S.
,
Hu
,
Q. X.
, and
Gao
,
J. Q.
,
2009
, “
An Adaptive Heat Source Model for Finite-Element Analysis of Keyhole Plasma Arc Welding
,”
Comput. Mater. Sci.
,
46
(
1
), pp.
167
172
.10.1016/j.commatsci.2009.02.018
30.
Tao
,
D. B.
,
Chen
,
S. J.
,
Bai
,
S. J.
,
Yu
,
Y.
,
Jiang
,
F.
, and
Lu
,
Y.-S.
,
2011
, “
Combined Measurement of Arc Current and Arc Force Based on the Split Anode Method
,”
Elec. Weld. Mach.
,
41
(
5
), pp.
10
13
.
31.
Chen
,
S. J.
,
Jiang
,
F.
,
Lu
,
Z. Y.
,
Tao
,
D. B.
, and
Yu
,
Y.
,
2011
, “
Measurement and Analysis of the Welding Arc Current Density and Pressure Distribution Based on Split Anode Method
,”
IEEE
International Conference on Mechatronics and Automation
, Beijing, China, Aug. 7–10, pp.
1544
1549
.10.1109/ICMA.2011.5985979
32.
Jiang
,
Y.
,
Xu
,
B. S.
, and
Lu
,
Y. H.
,
2010
, “
Radial Distribution of Variable Polarity Plasma Arc Pressure
,”
Trans. China Weld. Inst.
,
31
(
11
), pp.
17
20
.
33.
Dai
,
D. S.
,
Song
,
Y. L.
,
Zhang
,
H.
, and
Zhu
,
Y. F.
,
2002
, “
Study on Arc Force in Plasma Welding
,”
Trans. China Weld. Inst.
,
23
(
2
), pp.
51
54
.
34.
Ando
,
H.
,
1996
,
Welding Arc Phenomenon (Augmented Edition)
, Chap. 2,
Sanpo Publications, Inc.
,
Tokyo, Japan
.
You do not currently have access to this content.