A new joining process for magnesium alloys, rotation friction drilling riveting (RFDR), is proposed in this paper. In RFDR operation, a semitubular rivet with a grip rod and a rivet cap rotating at high speed is brought to contact with the riveted sheets, generating frictional heat between the rivet and riveted sheets, which softens the sheet materials and enables the rivet to be drilled into the sheets under reduced force. While being inserted, the rivet pierces through the top sheet and flares into the bottom sheets due to the action of the cavity die, thereby forming a mechanical interlock between the rivet and riveted sheets. Our studies showed that RFDR of the magnesium alloy sheets could be carried out at room temperature and provided the joints with superior shear strength and fatigue property when compared with self-piercing riveting (SPR). The effects of the operating parameters of the RFDR process on the quality of the joints were also investigated in the study. The results showed that while the rivet rotating speed little affected the shear strength of RFDR joints, the rivet shank length and the downward pressure had a significant influence on the mechanical properties of the RFDR joints. Therefore, it is very important to choose the right rivet shank length and downward pressure for producing RFDR joints with high quality.

References

1.
Friedrich
,
H.
, and
Schumann
,
S.
,
2001
, “
Research for a ‘New Age of Magnesium’ in the Automotive Industry
,”
J. Mater. Process. Technol.
,
117
, pp.
276
281
.10.1016/S0924-0136(01)00780-4
2.
Kulekci
,
M. K.
,
2008
, “
Magnesium and Its Alloys Applications in Automotive Industry
,”
Int. J. Adv. Manuf. Technol.
,
39
, pp.
851
865
.10.1007/s00170-007-1279-2
3.
Sun
,
D. Q.
,
Lang
,
B.
,
Sun
,
D. X.
, and
Li
,
J. B.
,
2007
, “
Microstructures and Mechanical Properties of Resistance Spot Welded Magnesium Alloy Joints
,”
Mater. Sci. Eng., A
,
460
, pp.
494
498
.10.1016/j.msea.2007.01.073
4.
Shi
,
H.
,
Qiu
,
R.
,
Zhu
,
J.
,
Zhang
,
K.
,
Yu
,
H.
, and
Ding
,
G.
,
2010
, “
Effects of Welding Parameters on the Characteristics of Magnesium Alloy Joint Welded by Resistance Spot Welding With Cover Plates
,”
Mater. Des.
,
31
, pp.
4853
4857
.10.1016/j.matdes.2010.05.044
5.
Feng
,
J. C.
,
Wang
,
Y. R.
, and
Zhang
,
Z. D.
,
2006
, “
Nugget Growth Characteristic for AZ31 Magnesium Alloy During Resistance Spot Welding
,”
Sci. Technol. Weld. Joining
,
11
, pp.
154
162
.10.1179/174329306X84364
6.
He
,
X.
,
Pearson
,
I.
, and
Young
,
K.
,
2008
, “
Self-Pierce Riveting for Sheet Materials: State of the Art
,”
J. Mater. Process. Technol.
,
199
, pp.
27
36
.10.1016/j.jmatprotec.2007.10.071
7.
Wang
,
B.
,
Hao
,
C.
,
Zhang
,
J.
, and
Zhang
,
H.
,
2006
, “
A New Self-Piercing Riveting Process and Strength Evaluation
,”
ASME J. Manuf. Sci. Eng.
,
128
(
2
), pp.
580
587
.10.1115/1.2137746
8.
Porcaro
,
R.
,
Hanssen
,
A. G.
,
Langseth
,
M.
, and
Aalberg
,
A.
,
2006
, “
Self-Piercing Riveting Process: An Experimental and Numerical Investigation
,”
J. Mater. Process. Technol.
,
171
, pp.
10
20
.10.1016/j.jmatprotec.2005.05.048
9.
Doege
,
E.
, and
Droder
,
K.
,
2001
, “
Sheet Metal Forming of Magnesium Wrought Alloys—Formability and Process Technology
,”
J. Mater. Process. Technol.
,
115
, pp.
14
19
.10.1016/S0924-0136(01)00760-9
10.
Chino
,
Y.
,
Iwasaki
,
H.
, and
Mabuchi
,
M.
,
2007
, “
Stretch Formability of AZ31 Alloy Sheets at Different Testing Temperatures
,”
Mater. Sci. Eng.
, A,
466
, pp.
90
95
.10.1016/j.msea.2007.02.027
11.
Jager
,
A.
,
Lukac
,
P.
,
Gartnerova
,
V.
,
Bohlen
,
J.
, and
Kainer
,
K. U.
,
2004
, “
Tensile Properties of Hot Rolled AZ31 Mg Alloy Sheets at Elevated Temperatures
,”
J. Alloys Compd.
,
378
, pp.
184
187
.10.1016/j.jallcom.2003.11.173
12.
Durandet
,
Y.
,
Deam
,
R.
,
Beer
,
A.
,
Song
,
W.
, and
Blacket
,
S.
,
2010
, “
Laser Assisted Self-Pierce Riveting of AZ31 Magnesium Alloy Strips
,”
Mater. Des.
,
31
, pp.
S13
S16
.10.1016/j.matdes.2009.10.038
13.
Wang
,
J. W.
,
Liu
,
Z. X.
,
Shang
,
Y.
,
Liu
,
A. L.
,
Wang
,
M. X.
,
Sun
,
R. N.
, and
Wang
,
P.-C.
,
2011
, “
Self-Piercing Riveting of Wrought Magnesium AZ31 Sheets
,”
ASME J. Manuf. Sci. Eng.
,
133
(3), p.
031009
.10.1115/1.4004138
14.
Hahn
,
O.
, and
Horstmann
,
M.
,
2007
, “
Mechanical Joining of Magnesium Components by Means of Inductive Heating—Realization and Capability
,”
Mater. Sci. Forum
,
539/543
, pp.
1638
1643
.10.4028/www.scientific.net/MSF.539-543.1638
15.
Gao
,
D.
,
Ersoy
,
U.
,
Stevensonz
,
R.
, and
Wang
,
P.-C.
,
2009
, “
A New One-Sided Joining Process for Aluminum Alloys: Friction Stir Blind Riveting
,”
ASME J. Manuf. Sci. Eng.
,
131
(6), p.
061002
.10.1115/1.4000311
16.
Lathabai
,
S.
,
Tyagi
,
V.
,
Ritchie
,
D.
,
Kearney
,
T.
,
Finnin
,
B.
,
Christian
,
S.
,
Sansome
,
A.
, and
White
,
G.
,
2011
, “
Friction Stir Blind Riveting: A Novel Joining Process for Automotive Light Alloys
,”
SAE Int. J. Mater. Manuf.
,
4
(
1
), pp.
589
601
10.4271/2011-01-0477.
17.
Zhang
,
C. Q.
,
Wang
,
X. J.
, and
Li
,
B. Q.
,
2011
, “
A Technological Study on Friction Stir Blind Rivet Jointing of AZ31B Magnesium Alloys and High-Strength DP600 Steel
,”
Adv. Mater. Res.
,
183–185
, pp.
1616
1620
.10.4028/www.scientific.net/AMR.183-185.1616
18.
Zhang
,
C. Q.
,
Li
,
B. Q.
, and
Wang
,
X. J.
,
2011
, “
Lap Joint Properties of FSBRed Dissimilar Metals AZ31 Mg Alloy and DP600 High-Strength Steel With Various Parameters
,”
Adv. Mater. Res.
,
228–229
, pp.
427
432
.10.4028/www.scientific.net/AMR.228-229.427
You do not currently have access to this content.