The spatter and recast layer are main metallurgical defects in laser drilling (LD). Combining jet electrochemical process with laser can minimize such defects. The hybrid process is called electrolysis jet guided laser drilling (EJGLD). The presented experiment results show that the electrolyte jet can guide and transmit laser to the workpiece for drilling; and the electrochemical dissolution can effectively reduce spatter and recast layer. This paper introduces work on how to optimize this hybrid process, in particular, how to set a proper distance between the cathode and workpiece for best efficiency and accuracy.

References

1.
Dahotre
,
N. B.
, and
Harimkar
,
S. P.
,
2008
,
Laser Fabrication and Machining of Materials
,
Springer
,
New York
, pp.
97
117
.
2.
Bandyopadhyay
,
S.
,
Sarin Sundar
,
J. K.
,
Sundararajan
,
G.
, and
Joshi
,
S. V.
,
2002
, “
Geometrical Features and Metallurgical Characteristics of Nd:YAG Laser Drilled Holes in Thick IN718 and Ti–6Al–4V Sheets
,”
J. Mater. Process. Technol.
,
127
, pp.
83
95
.10.1016/S0924-0136(02)00270-4
3.
Voisey
,
K. T.
, and
Clyne
,
T. W.
,
2004
, “
Laser Drilling of Cooling Holes Through Plasma Sprayed Thermal Barrier Coatings
,”
Surf. Coat. Technol.
,
176
, pp.
296
306
.10.1016/S0257-8972(03)00748-5
4.
Chien
,
W.-T.
, and
Hou
,
S.-C.
,
2007
, “
Investigating the Recast Layer Formed During the Laser Trepan Drilling of Inconel 718 Using the Taguchi Method
,”
Int. J. Adv. Manuf. Technol.
,
33
, pp.
308
316
.10.1007/s00170-006-0454-1
5.
Yilbas
,
B. S.
,
1997
, “
Parametric Study to Improve Laser Hole Drilling Process
,”
J. Mater. Process. Technol.
,
70
, pp.
264
273
.10.1016/S0924-0136(97)00076-9
6.
Low
,
D. K. Y.
,
Li
,
L.
, and
Byrd
,
P. J.
,
2000
, “
The Effects of Process Parameters on Spatter Deposition in Laser Percussion Drilling
,”
Opt. Laser Technol.
,
32
, pp.
347
353
.10.1016/S0030-3992(00)00079-7
7.
Tunna
,
L.
,
Kearns
,
A.
,
O'Neill
,
W.
, and
Sutcliffe
,
C. J.
,
2001
, “
Micromachining of Copper Using Nd:YAG Laser Radiation at 1064, 532 and 355 nm Wavelengths
,”
Opt. Laser Technol.
,
33
, pp.
135
143
.10.1016/S0030-3992(00)00126-2
8.
Dausinger
,
F.
,
Lichtner
,
F.
, and
Lubatschowski
,
H.
, eds.,
2004
, Femtosecond Technology for Technical and Medical Applications, Springer-Verlag, Berlin, pp.
256
261
.
9.
Zhu
,
X.
,
Naumov
,
A. Y. U.
,
Villeneuve
,
D. M.
, and
Corkum
,
P. B.
,
1999
, “
Influence of Laser Parameters and Material Properties on Micro Drilling With Femtosecond Laser Pulses
,”
Appl. Phys. A
,
69
(
Suppl.
), pp.
S367
S371
.10.1007/s003390051418
10.
Richerzhagen
,
B.
,
1997
, “
Water-Guided Laser Processing
,”
Ind. Laser Rev
,
10
, pp.
8
10
.
11.
Lau
,
W. S.
,
Yue
,
T. M.
, and
Wang.
M.
,
1994
, “
Ultrasonic-Aided Laser Drilling of Aluminium-Based Metal Matrix Composites
,”
CIRP Ann.-Manuf. Technol.
,
43
, pp.
177
180
.10.1016/S0007-8506(07)62190-8
12.
Li
,
L.
, and
Achara
,
C.
,
2004
, “
Chemical Assisted Laser Machining for the Minimization of Recast and Heat Affected Zone
,”
CIRP Ann.–Manuf. Technol.
,
53
, pp.
175
178
.10.1016/S0007-8506(07)60672-6
13.
Zhang
,
H.
, and
Xu
,
J.
,
2010
, “
Modeling and Experimental Investigation of Laser Drilling With Jet Electrochemical Machining
,”
Chin. J. Aeruonaut.
,
23
(
4
), pp.
103
109
.10.1016/S1000-9361(09)60193-X
14.
Zhang
,
H.
,
Xu
,
J.
, and
Wang
,
J.
,
2009
, “
Investigation of a Novel Hybrid Process of Laser Drilling Assisted With Jet Electrochemical Machining
,”
Opt. Lasers Eng.
,
47
, pp.
1242
1249
.10.1016/j.optlaseng.2009.05.009
15.
Yuan
,
L.
,
Xu
,
J.
, and
Zao
,
J.
,
2010
, “
Study of Theoretical Model and Experiment on Laser Machining Assisted by Jet Electrochemical Machining
,”
J. SE Univ.
,
40
, pp.
736
740
.
16.
Pajak
,
P. T.
,
Desilva
,
A. K. M.
, and
Harrison
,
D. K.
,
2006
, “
Precision and Efficiency of Laser Assisted Jet Electrochemical Machining
,”
Precis. Eng.
,
30
, pp.
288
298
.10.1016/j.precisioneng.2005.09.006
You do not currently have access to this content.