Today, free-form parts are made in small production volume with time consuming methods and a significant amount of material waste. These methods include computer numerical control (CNC)-machining and the layered rapid prototyping techniques stereolithography apparatus (SLA), selective layer sintering (SLS), fused deposition modeling (FDM), 3D print, etc., which are well suited for smaller parts that are rich in detail. Variable geometry molds (VGMs) offer a different approach to small production volume. A die or mold can change shape between the castings, and parts with a different geometry can be made in the same mold. VGM is used in a multitude of applications such as sheet metal forming of parts for aircrafts, trains, and cranial prostheses. The present project focuses on VGM for free-form concrete facade elements, which, in contrast to previous VGM projects, uses a liquid raw material and involves the use of only a small amount of force. The present VGM process is based on the so-called reconfigurable pin-type tooling (RPT) principle. The geometric possibilities have been examined using a proof-of-concept RPT test mold. Sixty closely packed adjustable pin-elements with hemispherical tops and a square section of 43.3×43.3mm2 create a dimpled surface that is evened out using an elastic interpolating layer. Castings with concrete and plaster are made on an elastic membrane that is sucked toward the pins using a vacuum. The shape of the cast elements and the mold surface have been measured and compared. The RPT test mold can produce a large variety of free-form geometric shapes. It is possible to make straight vertical surfaces and even horizontal surfaces with dimples of only 0.3 mm. Part details can be made down to the size of a pin with hole depths up to 65 mm and protrusions up to 19 mm. Repeatability is better than the measurement uncertainty. VGMs using the RPT principle can be used for making scale models of a range of free-form cast concrete façade elements. It is almost possible to remove the imprints from the pins by using the right interpolators, but the dimples could also be a visually attractive characteristic of the process that could be valued by architects. Large hole depths and smaller protrusions are possible.

1.
Munro
,
C.
, and
Walczyk
,
D.
, 2007, “
Reconfigurable Pin-Type Tooling: A Survey of Prior Art and Reduction to Practice
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
129
(
3
), pp.
551
565
.
2.
Fleming
,
W.
, 1987, “
Vertical Three-Dimensional Image Screen
,” U.S. Patent No. 4,654,989.
3.
Papazian
,
J. M.
,
Anagnostou
,
E. L.
, and
Christ
,
R. J. J.
, 2004, “
Shape Control Using Industrial Scale Reconfigurable Tooling
,”
AIP Conf. Proc.
0094-243X,
712
, pp.
735
740
.
4.
Webb
,
R. D.
, and
Hardt
,
D. E.
, 1991, “
Transfer Function Description of Sheet Metal Forming for Process Control
,”
ASME J. Eng. Ind.
0022-0817,
113
(
1
), pp.
44
52
.
5.
Socrate
,
S.
, and
Boyce
,
M. C.
, 2001, “
A Finite Element Based Die Design Algorithm for Sheet-Metal Forming on Reconfigurable Tools
,”
ASME J. Eng. Mater. Technol.
0094-4289,
123
(
4
), pp.
489
495
.
6.
Viney
,
T.
, 2005, “
Precast Permanent Formwork in the 21st Century
,”
Concrete
0010-5317,
39
(
5
), pp.
10
11
.
7.
Cochrane
,
J.
, 1863, “
Bending Metal Plates
,” U.S. Patent No. 39,886.
8.
Nakajima
,
N.
, 1969, “
A Newly Developed Technique to Fabricate Complicated Dies and Electrodes With Wires
,”
Bull. JSME
0021-3764,
12
(
54
), pp.
1546
1554
.
9.
Im
,
Y.
,
Walczyk
,
D. F.
, and
Schwarz
,
R. C.
, 2000, “
A Comparison of Pin Actuation Schemes for Large-Scale Discrete Dies
,”
J. Manuf. Process.
1526-6125,
2
(
4
), pp.
247
257
.
10.
Li
,
M.
,
Cai
,
Z.
,
Sui
,
Z.
, and
Li.
,
X.
, 2008, “
Principle and Applications of Multi-Point Matched-Die Forming for Sheet Metal
,”
Proc. Inst. Mech. Eng., Part B
0954-4054,
222
, pp.
581
589
.
11.
Kleespies
,
H. S.
, III
, and
Crawford
,
R. H.
, 1998, “
Vacuum Forming of Compound Curved Surfaces With a Variable Geometry Mold
,”
J. Manuf. Syst.
0278-6125,
17
(
5
), pp.
325
337
.
12.
Eigen
,
G. F.
, 1992, “
Smoothing Methods for Discrete Die Forming
,” MS thesis, Department of Mechanical Engineering, Massachusetts Institute of Technology, p.
99
.
13.
Li
,
M.
,
Liu
,
Y.
, and
Su
,
S.
, 1999, “
Multi-Point Forming: A Flexible Manufacturing Method for a 3-D Surface Sheet
,”
J. Mater. Process. Technol.
0924-0136,
87
(
1–3
), pp.
277
280
.
14.
Robinson
,
R. E.
, 1987, “
Design of an Automated Variable Configuration Die and Press for Sheet Metal Forming
,” MS thesis, Department of Mechanical Engineering, Massachusetts Institute of Technology, p.
133
.
15.
Olsen
,
B. A.
, 1980, “
Die Forming of Sheet Metal Using Discrete Surfaces
,” MS thesis, Department of Mechanical Engineering, Massachusetts Institute of Technology, p.
139
.
16.
Tan
,
F. X.
,
Li
,
M. Z.
, and
Cai
,
Z. Y.
, 2007, “
Research on the Process of Multi-Point Forming for the Customized Titanium Alloy Cranial Prosthesis
,”
J. Mater. Process. Technol.
0924-0136,
187–188
, pp.
453
457
.
17.
Zhang
,
Q.
,
Dean
,
T. A.
, and
Wang
,
Z. R.
, 2006, “
Numerical Simulation of Deformation in Multi-Point Sandwich Forming
,”
Int. J. Mach. Tools Manuf.
0890-6955,
46
(
7–8
), pp.
699
707
.
18.
Zhang
,
Q.
,
Wang
,
Z. R.
, and
Dean
,
T. A.
, 2008, “
The Mechanics of Multi-Point Sandwich Forming
,”
Int. J. Mach. Tools Manuf.
0890-6955,
48
(
12–13
), pp.
1495
1503
.
19.
Pham
,
D. T.
,
Su
,
S. Z.
, and
Lib
,
M. Z.
, 2007, “
Digital Dieless Tooling and Jigless Tooling Technology for Manufacturing 3D Panels Using Multi-Point Forming Methodology
,” http://www.iproms.org/system/files/19.pdfhttp://www.iproms.org/system/files/19.pdf
21.
Papazian
,
J. M.
, 2002, “
Tools of Change
,”
Mech. Eng. (Am. Soc. Mech. Eng.)
0025-6501,
124
(
2
), pp.
52
55
.
22.
Walczyk
,
D. F.
,
Hosford
,
J. F.
, and
Papazian
,
J. M.
, 2003, “
Using Reconfigurable Tooling and Surface Heating for Incremental Forming of Composite Aircraft Parts
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
125
(
2
), pp.
333
343
.
23.
Munro
,
C. B.
,
Walczyk
,
D.
, and
Dvorak
,
G.
, 2004, “
Incremental Double Diaphragm Forming of Composite Materials Using Reconfigurable Tooling
,”
NAMRE/SME
1047-3025,
32
, pp.
495
502
.
24.
Wolak
,
J.
,
Bodoia
,
J. R.
, and
Sherrer
,
R. E.
, 1973, “
Preliminary Study of an Infinitely Variable Surface Generator and Its Application to Die Forming
,”
Manuf. Eng. Trans.
0363-700X,
2
, pp.
155
160
.
25.
Huntsman Advanced Materials
, 2006, “
New RenTool Casting System Used for Award-Winning ‘Car for China’
,” www.huntsman.com/advanced_materials/Media/CH10_China_Car_04_05.pdfwww.huntsman.com/advanced_materials/Media/CH10_China_Car_04_05.pdf
26.
Buchholz
,
U.
, 2007, “
Casting Casting Technique Enables Faster Manufacture of Automotive Components
,”
Reinforced Plastics
,
51
(
1
), pp.
30
31
.
27.
Kelkar
,
A.
, and
Koc
,
B.
, 2008, “
Geometric Planning and Analysis for Hybrid Re-Configurable Molding and Machining Process
,”
Rapid Prototyping J.
1355-2546,
14
(
1
), pp.
23
34
.
28.
Halford
,
B.
, 2008, “
Changing the Face of Tooling
,”
Plastics Engineering
0091-9578,
64
(
1
), pp.
28
32
.
30.
North Sails, UK
, 2009, “
How is 3DL Made?
,” http://www.uk.northsails.comhttp://www.uk.northsails.com
31.
Fuchs
,
A.
, 1982, “
Method and an Arrangement for Producing a Curved Sail
,” U.S. Patent No. 4,309,824.
32.
Walczyk
,
D.
, and
Munro
,
C.
, 2009, “
Modeling and Analysis of an Active Reconfigurable Fixturing Device Using a Bed of Pins Lowered on a Moving Platen
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
131
(
2
), p.
021009
.
33.
Proctor
,
P.
, 1998, “
Pogo Fixtures Enhance Tooling Flexibility
,”
Aviat. Week Space Technol.
0005-2175,
149
(
8
), pp.
50
52
.
35.
Danish Technological Institute
, “
Project—Unique Concrete Structures (UnikaBeton)
,” http://www.dti.dkhttp://www.dti.dk
36.
West
,
M.
, 2006, “
Flexible Fabric Molds for Precast Trusses; Flexible Gewebeschalungen für Fertigteilbinder
,”
Betonwerk Fertigteil-Tech.
0373-4331,
72
(
10
), pp.
46
52
.
37.
Skjoedt
,
M.
, 2008, “
Rapid Prototyping by Single Point Incremental Forming of Sheet Metal
,” Ph.D. thesis, Technical University of Denmark.
38.
Jackson
,
K.
, and
Allwood
,
J.
, 2009, “
The Mechanics of Incremental Sheet Forming
,”
J. Mater. Process. Technol.
0924-0136,
209
(
3
), pp.
1158
1174
.
39.
Khoshnevis
,
B.
, 2004, “
Automated Construction by Contour Crafting-Related Robotics and Information Technologies
,”
Autom. Constr.
0926-5805,
13
(
1
), pp.
5
19
.
40.
Khoshnevis
,
B.
,
Bodiford
,
M. P.
, and
Burks
,
K. H.
, 2005, “
Lunar Contour Crafting—A Novel Technique for ISRU-Based Habitat Development
,”
43rd AIAA Aerospace Sciences Meeting and Exhibit—Meeting Papers
, pp.
7397
7409
.
41.
Cengiz
,
O.
, and
Turanli
,
L.
, 2004, “
Comparative Evaluation of Steel Mesh, Steel Fibre and High-Performance Polypropylene Fibre Reinforced Shotcrete in Panel Test
,”
Cem. Concr. Res.
0008-8846,
34
(
8
), pp.
1357
1364
.
42.
Mclntyre
,
T.
, 2008, “
Cocoon Phase
,” Building Design (1834), p.
10
.
43.
C. F. Møller Architects
, 2009, “
Darwin Centre Phase II
,” http://www.cfmoller.comhttp://www.cfmoller.com
44.
Glassfibre Reinforced Concrete Association—International
, 2009, “
Manufacturing GRC
,” http://www.grca.org.ukhttp://www.grca.org.uk
45.
Walczyk
,
D. F.
, and
Hardt
,
D. E.
, 1999, “
A Comparison of Rapid Fabrication Methods for Sheet Metal Forming Dies
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
121
(
2
), pp.
214
224
.
46.
Walczyk
,
D. F.
, and
Hardt
,
D. E.
, 1998, “
Design and Analysis of Reconfigurable Discrete Dies for Sheet Metal Forming
,”
J. Manuf. Syst.
0278-6125,
17
(
6
), pp.
436
454
.
47.
Kirby
,
A.
, and
Stauffer
,
L. A.
, 2007, “
Analysis of Pin Characteristics for a Variable Geometry Mold
,”
Int. J. Adv. Manuf. Technol.
0268-3768,
32
(
7–8
), pp.
698
704
.
48.
Klit
,
P.
,
Casper
,
K.
, and
Pedersen
,
N. L.
, 2007, “
Machine Elements—Analysis and Design
,” Department of Mechanical Engineering, Technical University of Denmark 2006, Kongens Lyngby, Denmark, p.
248
.
49.
Sullivan
,
E. V.
, 2000, “
Individual Motor Pin Module
,” U.S. Patent No. 6,012,314.
50.
Masters
,
W. E.
, 1996, “
Method and Apparatus for Producing Three-Dimensional Articles From a Computer Generated Design
,” U.S. Patent No. 5,546,313.
51.
Berteau
,
J.
, 1994, “
Variable-Shape Mold
,” U.S. Patent No. 5,330,343.
52.
Todoroki
,
M.
, 1993, “
Apparatus and Method for Producing Variable Configuration Die
,” U.S. Patent No. 5,253,176.
53.
Humphrey
,
D. H.
, 1971, “
Mold Forming Device
,” U.S. Patent No. 3,596,869.
54.
Callister
,
J.
, and
William
,
D.
, 2003,
Materials Science and Engineering: An Introduction
,
Wiley
,
New York
, p.
820
.
55.
Schwarz
,
R.
,
Nardiello
,
J.
, and
Papazian
,
J.
, 2004, “
Suppression of Dimpling in Sheet Metal Parts Formed on Discrete Tooling
,” Recent Advances in Experimental Mechanics, pp.
757
768
.
56.
Gruenwald
,
G.
, 1987,
Thermoforming: A Plastics Processing Guide
,
Technomic
,
Lancaster, PA
, p.
222
.
57.
Boas
,
R. C.
, 1997, “
Sequential Setup Mechanism Design for a Reconfigurable Sheet Metal Forming Die
,” Department of Mechanical Engineering, Massachusetts Institute of Technology, p.
145
.
58.
Rzepniewski
,
A. K.
, and
Hardt
,
D. E.
, 2008, “
Development of General Multivariable Run-by-Run Control Methods With Application to a Sheet Metal Forming Process
,”
Int. J. Mach. Tools Manuf.
0890-6955,
48
(
5
), pp.
599
608
.
59.
Clements
,
L. L.
,
Crowley
,
J. L.
, and
Jacobson
,
T.
, 2006, “
Innovative Uses of Reconfigurable Tooling for Rapid, Low-Cost Composite Manufacturing, Repair, and Replication
,”
SAMPE J.
0091-1062,
42
(
6
), pp.
70
75
.
You do not currently have access to this content.