This paper presents a new tool orientation optimization approach for multi-axis machining considering up to second order kinematical performance of the multi-axis machine. Different from the traditional optimization approach, tool orientations are optimized with the goal of improving the kinematical performance of the machining process, not only increasing the material removal from purely geometrical aspect. The procedure is to first determine a few key orientations on the part surface along the tool path according to the curvature variation. Key orientations are initially optimized to be able to achieve high material removal by comparing the tool swept curve and the actual part surface. Intermediate orientations between key orientations are interpolated smoothly using rigid body interpolation techniques on SO(3). The time-optimal trajectory planning problem with velocity and acceleration constraints of the multi-axis machine is then solved to adjust the initially determined tool orientations to better exploit the multi-axis machine’s motion capacity. Simulation and experiment validate the feasibility and effectiveness of the proposed approach.

1.
Fleisig
,
R. V.
, and
Spence
,
A. D.
, 2001, “
A Constant Feed and Reduced Angular Acceleration Interpolation Algorithm for Multi-Axis Machining
,”
Comput.-Aided Des.
0010-4485,
33
(
1
), pp.
1
15
.
2.
Tutunea-Fatan
,
O. R.
, and
Feng
,
H. Y.
, 2005, “
Determination of Geometry-Based Errors for Interpolated Tool Paths in Five-Axis Surface Machining
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
127
(
1
), pp.
60
67
.
3.
Ye
,
T.
, and
Xiong
,
C. H.
, 2008, “
Geometric Parameter Optimization in Multi-Axis Machining
,”
Comput.-Aided Des.
0010-4485,
40
(
8
), pp.
879
890
.
4.
Xiong
,
C. H.
, 2007, “
An Approach to Error Elimination for Multi-Axis CNC Machining and Robot Manipulation
,”
Sci. China, Ser. E: Technol. Sci.
1006-9321,
50
(
5
), pp.
560
574
.
5.
Rao
,
N.
,
Ismail
,
F.
, and
Bedi
,
S.
, 1997, “
Tool Path Planning for Five-Axis Machining Using the Principal Axis Method
,”
Int. J. Mach. Tools Manuf.
0890-6955,
37
(
7
), pp.
1025
1040
.
6.
Chiou
,
C. J.
, and
Lee
,
Y. S.
, 2002, “
A Machining Potential Field Approach to Tool Path Generation for Multi-Axis Sculptured Surface Machining
,”
Comput.-Aided Des.
0010-4485,
34
(
5
), pp.
357
371
.
7.
Makhanov
,
S.
, 2007, “
Optimization and Correction of the Tool Path of the Five-Axis Milling Machine—Part 1. Spatial Optimization
,”
Math. Comput. Simul.
0378-4754,
75
(
5–6
), pp.
210
230
.
8.
Makhanov
,
S.
, 2007, “
Optimization and Correction of the Tool Path of the Five-Axis Milling Machine—Part 2: Rotations and Setup
,”
Math. Comput. Simul.
0378-4754,
75
(
5–6
), pp.
231
250
.
9.
Anotaipaiboon
,
W.
,
Makhanov
,
S. S.
, and
Bohez
,
E. L. J.
, 2006, “
Optimal Setup for Five-Axis Machining
,”
Int. J. Mach. Tools Manuf.
0890-6955,
46
(
9
), pp.
964
977
.
10.
Munlin
,
M.
,
Makhanov
,
S. S.
, and
Bohez
,
E. L. J.
, 2004, “
Optimization of Rotations of a Five-Axis Milling Machine Near Stationary Points
,”
Comput.-Aided Des.
0010-4485,
36
(
12
), pp.
1117
1128
.
11.
Gray
,
P.
,
Bedi
,
S.
, and
Ismail
,
F.
, 2003, “
Rolling Ball Method for 5-Axis Surface Machining
,”
Comput.-Aided Des.
0010-4485,
35
(
4
), pp.
347
357
.
12.
Rao
,
A.
, and
Sarma
,
R.
, 2000, “
On Local Gouging in Five-Axis Sculptured Surface Machining Using Flat-End Tools
,”
Comput.-Aided Des.
0010-4485,
32
(
7
), pp.
409
420
.
13.
Hosseinkhani
,
Y.
,
Akbari
,
J.
, and
Vafaeesefat
,
A.
, 2007, “
Penetration-Elimination Method for Five-Axis CNC Machining of Sculptured Surfaces
,”
Int. J. Mach. Tools Manuf.
0890-6955,
47
(
10
), pp.
1625
1635
.
14.
Rauch
,
M.
,
Duc
,
E.
, and
Hascoet
,
J. Y.
, 2009, “
Improving Trochoidal Tool Paths Generation and Implementation Using Process Constraints Modelling
,”
Int. J. Mach. Tools Manuf.
0890-6955,
49
(
5
), pp.
375
383
.
15.
Otkur
,
M.
, and
Lazoglu
,
I.
, 2007, “
Trochoidal Milling
,”
Int. J. Mach. Tools Manuf.
0890-6955,
47
(
9
), pp.
1324
1332
.
16.
Xiong
,
C.
,
Ding
,
H.
, and
Xiong
,
Y.
, 2007,
Fundamentals of Robotic Grasping and Fixturing
,
World Scientific
,
Singapore
.
17.
Erkorkmaz
,
K.
, and
Altintas
,
Y.
, 2001, “
High Speed CNC System Design. Part I: Jerk Limited Trajectory Generation and Quintic Spline Interpolation
,”
Int. J. Mach. Tools Manuf.
0890-6955,
41
(
9
), pp.
1323
1345
.
18.
Langeron
,
J. M.
,
Duc
,
E.
,
Lartigue
,
C.
, and
Bourdet
,
P.
, 2004, “
A New Format for 5-Axis Tool Path Computation, Using Bspline Curves
,”
Comput.-Aided Des.
0010-4485,
36
(
12
), pp.
1219
1229
.
19.
Lei
,
W. T.
, and
Wang
,
S. B.
, 2009, “
Robust Real-Time NURBS Path Interpolators
,”
Int. J. Mach. Tools Manuf.
0890-6955,
49
(
7–8
), pp.
625
633
.
20.
Farouki
,
R. T.
,
Tsai
,
Y. F.
, and
Yuan
,
G. F.
, 1999, “
Contour Machining of Free-Form Surfaces With Real-Time PH Curve CNC Interpolators
,”
Comput. Aided Geom. Des.
0167-8396,
16
(
1
), pp.
61
76
.
21.
Dong
,
J. Y.
,
Ferreira
,
P. M.
, and
Stori
,
J. A.
, 2007, “
Feed-Rate Optimization With Jerk Constraints for Generating Minimum-Time Trajectories
,”
Int. J. Mach. Tools Manuf.
0890-6955,
47
(
12–13
), pp.
1941
1955
.
22.
Dong
,
J.
, and
Stori
,
J. A.
, 2006, “
A Generalized Time-Optimal Bidirectional Scan Algorithm for Constrained Feed-Rate Optimization
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
128
(
2
), pp.
379
390
.
23.
Sencer
,
B.
,
Altintas
,
Y.
, and
Croft
,
E.
, 2008, “
Feed Optimization for Five-Axis CNC Machine Tools With Drive Constraints
,”
Int. J. Mach. Tools Manuf.
0890-6955,
48
(
7–8
), pp.
733
745
.
24.
Kim
,
T.
, and
Sarma
,
S. E.
, 2003, “
Optimal Sweeping Paths on a 2-Manifold: A New Class of Optimization Problems Defined by Path Structures
,”
IEEE Trans. Rob. Autom.
1042-296X,
19
(
4
), pp.
613
636
.
25.
Park
,
F.
, and
Ravani
,
B.
, 1997, “
Smooth Invariant Interpolation of Rotations
,”
ACM Trans. Graphics
0730-0301,
16
(
3
), pp.
277
295
.
26.
Makhanov
,
S. S.
, and
Ivanenko
,
S. A.
, 2003, “
Grid Generation as Applied to Optimize Cutting Operations of the Five-Axis Milling Machine
,”
Appl. Numer. Math.
0168-9274,
46
(
3–4
), pp.
331
351
.
27.
Chen
,
H. P.
,
Kuo
,
H. H.
, and
Tsay
,
D. M.
, 2009, “
Removing Tool Marks of Blade Surfaces by Smoothing Five-Axis Point Milling Cutter Paths
,”
J. Mater. Process. Technol.
0924-0136,
209
(
17
), pp.
5810
5817
.
28.
Kim
,
T.
,
Son
,
S. K.
, and
Sarma
,
S. E.
, 2004, “
On Actuator Reversal Motions of Machine Tools
,”
Mech. Mach. Theory
0094-114X,
39
(
3
), pp.
299
322
.
29.
Bi
,
Q. Z.
,
Wang
,
Y. H.
, and
Ding
,
H.
, 2010, “
A GPU-Based Algorithm for Generating Collision-Free and Orientation-Smooth Five-Axis Finishing Tool Paths of a Ball-End Cutter
,”
Int. J. Prod. Res.
0020-7543,
48
(
4
), pp.
1105
1124
.
30.
Verscheure
,
D.
,
Demeulenaere
,
B.
,
Swevers
,
J.
,
De Schutter
,
J.
, and
Diehl
,
M.
, 2008, “
Time-Energy Optimal Path Tracking for Robots: A Numerically Efficient Optimization Approach
,”
Proceedings of AMC’08: Tenth International Workshop on Advanced Motion Control
, Vols. 1 and 2, pp.
727
732
.
31.
Verscheure
,
D.
,
Demeulenaere
,
B.
,
Swevers
,
J.
,
De Schutter
,
J.
, and
Diehl
,
M.
, 2009, “
Time-Optimal Path Tracking for Robots: A Convex Optimization Approach
,”
IEEE Trans. Autom. Control
0018-9286,
54
(
10
), pp.
2318
2327
.
32.
Lo
,
C. C.
, 1999, “
Efficient Cutter-Path Planning for Five-Axis Surface Machining With a Flat-End Cutter
,”
Comput.-Aided Des.
0010-4485,
31
(
9
), pp.
557
566
.
33.
Lee
,
Y. S.
, 1998, “
Non-Isoparametric Tool Path Planning by Machining Strip Evaluation for 5-Axis Sculptured Surface Machining
,”
Comput.-Aided Des.
0010-4485,
30
(
7
), pp.
559
570
.
34.
Weinert
,
K.
,
Du
,
S. J.
,
Damm
,
P.
, and
Stautner
,
M.
, 2004, “
Swept Volume Generation for the Simulation of Machining Processes
,”
Int. J. Mach. Tools Manuf.
0890-6955,
44
(
6
), pp.
617
628
.
35.
Zhu
,
L. M.
,
Zhang
,
X. M.
,
Zheng
,
G.
, and
Ding
,
H.
, 2009, “
Analytical Expression of the Swept Surface of a Rotary Cutter Using the Envelope Theory of Sphere Congruence
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
131
(
4
), p.
041017
.
You do not currently have access to this content.