This paper deals with the stiffness computation and model identification of parallel kinematic machine tools (PKMs). Due to their high dynamic abilities, PKMs are subjected to high inertial and cutting loads while machining. These loads generate structure deflection, and it results in a low level of accuracy compared with serial machines. The aim of this paper is to present a “compact” and predictable model of PKM. This model could be useful to optimize part positioning in the workspace or adapt machining strategies in order to minimize the influence of structure deflections. The proposed model takes into account legs’ and joints’ compliances. Considering the geometry of most of parallel architectures, the legs are modeled as beams. The focus, here, is particularly on joints’ models. In literature, when the compliance of joints is considered, it is most of the time modeled with a constant stiffness. In this paper, a different approach is proposed, based on a technical analysis of the joints. Models proposed are applied to an existing PKM: the Tricept. The parameters of this model (i.e., the stiffness of the joints) are then identified; thanks to experimental stiffness measurements done on an ABB 940 Tricept robot. This robot is used in the industry for machining operations, such as grinding or drilling. A discussion about identifiable parameters is performed so as to best fit with experimental measurements. Finally, this model is used to define a static workspace where the machined parts are within the tolerances for a given operation.

1.
Terrier
,
M.
,
Dugas
,
A.
, and
Hascoët
,
J. -Y.
, 2004, “
Qualification of Parallel Kinematics Machines in High-Speed Milling on Free Form Surfaces
,”
Int. J. Mach. Tools Manuf.
0890-6955,
44
, pp.
865
877
.
2.
Pritschow
,
G.
, 2000, “
Parallel Kinematic Machines (PKM)—Limitations and New Solutions
,”
CIRP Ann.
0007-8506,
49
, pp.
275
280
.
3.
Geldart
,
M.
,
Webb
,
B.
,
Larsson
,
H.
,
Backstrom
,
M.
,
Gindy
,
N.
, and
Rask
,
K.
, 2003, “
A Direct Comparison of the Machining Performance of a Variax 5 Axis Parallel Kinetic Machining Centre With Conventional 3 and 5 Axis Machine Tools
,”
Int. J. Mach. Tools Manuf.
0890-6955,
43
, pp.
1107
1116
.
4.
Pritschow
,
G.
,
Eppler
,
C.
, and
Garber
,
T.
, 2002, “
Influence of the Dynamic Stiffness on the Accuracy of PKM
,”
Parallel Kinematic Machines in Research and Practice
, Vol.
32
,
Zwickau: Verlag Wissenschaftliche Scripten
,
Chemnitz
, pp.
313
333
.
5.
Chanal
,
H.
,
Duc
,
E.
, and
Ray
,
P.
, 2006, “
A Study of the Impact of Machine Tool Structure on Machining Processes
,”
Int. J. Mach. Tools Manuf.
0890-6955,
46
(
2
), pp.
98
106
.
6.
Cobet
,
M.
, 2002, “
Designing PKMs: Working Volume, Stiffness, Frequencies
,”
Parallel Kinematic Machines in Research and Practice
, Vol.
32
,
Zwickau: Verlag Wissenschaftliche Scripten
,
Chemnitz
, pp.
83
103
.
7.
Majou
,
F.
,
Gosselin
,
C.
,
Wenger
,
P.
, and
Chablat
,
D.
, 2007, “
Parametric Stiffness Analysis of the Orthoglide
,”
Mech. Mach. Theory
0094-114X,
42
(
3
), pp.
296
311
.
8.
Weck
,
M.
, and
Staimer
,
D.
, 2002, “
Parallel Kinematic Machine Tools—Current State and Future Potentials
,”
CIRP Ann.
0007-8506,
51
, pp.
671
681
.
9.
Wang
,
Y.
,
Huang
,
T.
,
Zhao
,
X.
,
Mei
,
J.
,
Chetwynd
,
D.
, and
Hu
,
S.
, 2006, “
Finite Element Analysis and Comparison of Two Hybrid Robots—The Tricept and the TriVariant
,”
International Conference on Intelligent Robots and Systems
, pp.
490
495
.
10.
Rizk
,
R.
,
Fauroux
,
J.
,
Munteanu
,
M.
, and
Gogu
,
G.
, 2006, “
A Comparative Stiffness Analysis of a Reconfigurable Parallel Machine With Three or Four Degrees of Mobility
,”
Journal of Machine Engineering
,
6
(
2
), pp.
45
55
.
11.
Deblaise
,
D.
, and
Maurine
,
P.
, 2006, “
Analytical Modeling of Redundant PKM Stiffness Using Matrix Structural Analysis
,”
Parallel Kinematic Machines in Research and Practice
, Vol.
33
,
Zwickau: Verlag Wissenschaftliche Scripten
,
Chemnitz
, pp.
155
174
.
12.
Wang
,
X.
, and
Mills
,
J.
, 2006, “
Dynamic Modeling of a Flexible-Link Planar Parallel Platform Using a Substructuring Approach
,”
Mech. Mach. Theory
0094-114X,
41
, pp.
671
687
.
13.
Bouzgarrou
,
B.
,
Thuilot
,
B.
,
Ray
,
P.
, and
Gogu
,
G.
, 2002, “
Modeling of Flexible Manipulators Applied to HSMW Machine Tools
,”
Mécanique & Industries
,
3
, pp.
173
180
.
14.
Katz
,
R.
, and
Li
,
Z.
, 2004, “
Kinematic and Dynamic Synthesis of a Parallel Kinematic High Speed Drilling Machine
,”
Int. J. Mach. Tools Manuf.
0890-6955,
44
, pp.
1381
1389
.
15.
Cosson
,
P.
,
Bettaieb
,
F.
, and
Hascoët
,
J. -Y.
, 2006, “
Modeling of a High Speed Machining Center With a Multibody Approach
,”
Proceedings of the Fifth International Conference High Speed Machining
, Metz, France.
16.
Dwivedy
,
S.
, and
Eberhard
,
P.
, 2006, “
Dynamic Analysis of Flexible Manipulators, a Literature Review
,”
Mech. Mach. Theory
0094-114X,
41
(
7
), pp.
749
777
.
17.
Shabana
,
A.
, 2005,
Dynamics of Multibody Systems
,
Cambridge University Press
,
Cambridge
.
18.
Tlusty
,
J.
,
Ziegert
,
J.
, and
Ridgeway
,
S.
, 1999, “
Fundamental Comparison of the Use of Serial and Parallel Kinematics for Machine Tools
,”
CIRP Ann.
0007-8506,
48
(
1
), pp.
351
356
.
19.
Wu
,
J.
,
Wang
,
J.
,
Wang
,
L.
,
Li
,
T.
, and
You
,
Z.
, 2009, “
Study on the Stiffness of a 5-DOF Hybrid Machine Tool With Actuation Redundancy
,”
Mech. Mach. Theory
0094-114X,
44
(
2
), pp.
289
305
.
20.
Pashkevich
,
A.
,
Chablat
,
D.
, and
Wenger
,
P.
, 2009, “
Stiffness Analysis of Overconstrained Parallel Manipulators
,”
Mech. Mach. Theory
0094-114X,
44
(
5
), pp.
966
982
.
21.
Bonnemains
,
T.
,
Pateloup
,
S.
,
Chanal
,
H.
,
Bouzgarrou
,
B.
, and
Ray
,
P.
, 2008, “
Static Behaviour Analysis of a New Parallel Kinematic Machine Tool Architecture: The Tripteor
,”
Proceedings of the IDMME-Virtual Concept
.
22.
Whalley
,
R.
,
Ebrahimi
,
M.
, and
Abdul-Ameer
,
A.
, 2005, “
Hybrid Modelling of Machine Tool Axis Drives
,”
Int. J. Mach. Tools Manuf.
0890-6955,
45
(
14
), pp.
1560
1576
.
23.
Uchiyama
,
N.
, 2008, “
Adaptive Two-Degree-of-Freedom Control of Feed Drive Systems
,”
Int. J. Mach. Tools Manuf.
0890-6955,
48
, pp.
437
445
.
24.
Palmgren
,
A.
, 1959,
Ball and Roller Bearing Engineering
,
SKF Industries Inc.
,
Philadelphia, PA
.
25.
Hernot
,
X.
,
Sartor
,
M.
, and
Guillot
,
J.
, 2000, “
Calculation of the Stiffness Matrix of Angular Contact Ball Bearings by Using the Analytical Approach
,”
ASME J. Mech. Des.
0161-8458,
122
(
1
), pp.
83
90
.
26.
Robin
,
V.
,
Sabourin
,
L.
, and
Gogu
,
G.
, 2007, “
Optimization of a Redundant Robotized Cell: Application to the Finishing of Cast Parts
,”
Proceedings of the 13th International Conference on Robotics and Applications (IASTED 2007)
, pp.
29
31
.
27.
Renaud
,
P.
,
Vivas
,
A.
,
Andreff
,
N.
,
Poignet
,
P.
,
Martinet
,
P.
,
Pierrot
,
F.
, and
Company
,
O.
, 2006, “
Kinematic and Dynamic Identification of Parallel Mechanisms
,”
Control Eng. Pract.
0967-0661,
14
, pp.
1099
1109
.
28.
Neumann
,
K. -E.
, 2006, “
Exechon Concept
,”
Parallel Kinematic Machines in Research and Practice
, Vol.
33
,
Zwickau: Verlag Wissenschaftliche Scripten
,
Chemnitz
, pp.
787
802
.
29.
Chanal
,
H.
,
Duc
,
E.
, and
Ray
,
P.
, 2006, “
A Study of the Impact of Machine Tool Structure on Machining Processes
,”
Proceedings of the Fifth International Conference on High Speed Machining
, Metz, Ecole Nationale d'Ingénieurs, France.
30.
Yang
,
J.
,
Jaganathan
,
V.
, and
Du
,
R.
, 2002, “
A New Dynamic Model for Drilling and Reaming Processes
,”
Int. J. Mach. Tools Manuf.
0890-6955,
42
(
2
), pp.
299
311
.
You do not currently have access to this content.