This paper presents an algorithm for optimal grasp planning and fixture synthesis. The object surface is depicted by a number of discrete points, which are used as the candidate contact points. This algorithm consists of two procedures. The first procedure selects a minimal subset of contacts from the candidates so as to construct a form-closure grasp or fixture, which is to determine a minimal subset of contact wrenches such that their convex hull forms a simplex containing the origin of the wrench space as an interior point. The second procedure adjusts the contact positions or alters the selected contact wrenches to maximize the minimum distance from the origin to the facets of the simplex, which enhances the capability of the grasp or fixture to immobilize and balance the object. As this algorithm does not employ any general optimization techniques and utilizes recursive formulas for most computations, it runs very fast. Its effectiveness and efficiency are demonstrated with illustrative examples.

1.
Nguyen
,
V. -D.
, 1988, “
Constructing Force-Closure Grasps
,”
Int. J. Robot. Res.
0278-3649,
7
(
3
), pp.
3
16
.
2.
Chen
,
I. -M.
, and
Burdick
,
J. W.
, 1993, “
Finding Antipodal Point Grasps on Irregular Shaped Objects
,”
IEEE Trans. Rob. Autom.
1042-296X,
9
(
4
), pp.
507
512
.
3.
Ponce
,
J.
,
Sullivan
,
S.
,
Sudsang
,
A.
,
Boissonnat
,
J. -D.
, and
Merlet
,
J. -P.
, 1997, “
On Computing Four-Fingered Equilibrium and Force-Closure Grasps of Polyhedral Objects
,”
Int. J. Robot. Res.
0278-3649,
16
(
1
), pp.
11
35
.
4.
Li
,
J. W.
,
Liu
,
H.
, and
Cai
,
H. -G.
, 2003, “
On Computing Three-Finger Force-Closure Grasps of 2-D and 3-D Objects
,”
IEEE Trans. Rob. Autom.
1042-296X,
19
(
1
), pp.
155
161
.
5.
Ding
,
D.
,
Liu
,
Y. H.
, and
Wang
,
S. G.
, 2001, “
Computation of 3-D Form-Closure Grasps
,”
IEEE Trans. Rob. Autom.
1042-296X,
17
(
4
), pp.
515
522
.
6.
Zhu
,
X. Y.
, and
Wang
,
J.
, 2003, “
Synthesis of Force-Closure Grasps on 3-D Objects Based on the Q Distance
,”
IEEE Trans. Rob. Autom.
1042-296X,
19
(
4
), pp.
669
679
.
7.
Liu
,
G. F.
,
Xu
,
J. J.
,
Wang
,
X.
, and
Li
,
Z. X.
, 2004, “
On Quality Functions for Grasp Synthesis, Fixture Planning, and Coordinated Manipulation
,”
IEEE Trans. Autom. Sci. Eng.
,
1
(
2
), pp.
146
162
. 1545-5955
8.
Zhu
,
X. Y.
, and
Ding
,
H.
, 2006, “
Computation of Force-Closure Grasps: An Iterative Algorithm
,”
IEEE Trans. Rob. Autom.
1042-296X,
22
(
1
), pp.
172
179
.
9.
Watanabe
,
T.
, and
Yoshikawa
,
T.
, 2007, “
Grasping Optimization Using a Required External Force Set
,”
IEEE Trans. Autom. Sci. Eng.
,
4
(
1
), pp.
52
66
. 1545-5955
10.
Liu
,
Y. H.
,
Lam
,
M. L.
, and
Ding
,
D.
, 2004, “
A Complete and Efficient Algorithm for Searching 3-D Form-Closure Grasps in the Discrete Domain
,”
IEEE Trans. Rob. Autom.
1042-296X,
20
(
5
), pp.
805
816
.
11.
Wang
,
M. Y.
, 2000, “
An Optimum Design for 3-D Fixture Synthesis in a Point Set Domain
,”
IEEE Trans. Rob. Autom.
1042-296X,
16
(
6
), pp.
839
846
.
12.
Wang
,
M. Y.
, and
Pelinescu
,
D. M.
, 2001, “
Optimizing Fixture Layout in a Point-Set Domain
,”
IEEE Trans. Rob. Autom.
1042-296X,
17
(
3
), pp.
312
323
.
13.
Zhu
,
X. Y.
, and
Ding
,
H.
, 2007, “
An Efficient Algorithm for Grasp Synthesis and Fixture Layout Design in Discrete Domain
,”
IEEE Trans. Rob. Autom.
1042-296X,
23
(
1
), pp.
157
163
.
14.
Ding
,
D.
,
Liu
,
Y. -H.
,
Wang
,
Y.
, and
Wang
,
S. G.
, 2001, “
Automatic Selection of Fixturing Surfaces and Fixturing Points for Polyhedral Workpieces
,”
IEEE Trans. Rob. Autom.
1042-296X,
17
(
6
), pp.
833
841
.
15.
Xiong
,
Y. L.
,
Ding
,
H.
, and
Wang
,
M. Y.
, 2002, “
Quantitative Analysis of Inner Force Distribution and Load Capacity of Grasps and Fixtures
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
124
(
2
), pp.
444
455
.
16.
Zheng
,
Y.
, and
Qian
,
W. -H.
, 2005, “
Coping With the Grasping Uncertainties in Force-Closure Analysis
,”
Int. J. Robot. Res.
0278-3649,
24
(
4
), pp.
311
327
.
17.
Markenscoff
,
X.
,
Ni
,
L.
, and
Papadimitriou
,
C. H.
, 1990, “
The Geometry of Grasping
,”
Int. J. Robot. Res.
0278-3649,
9
(
1
), pp.
61
74
.
18.
Mishra
,
B.
,
Schwarz
,
J. T.
, and
Sharir
,
M.
, 1987, “
On the Existence and Synthesis of Multifingered Positive Grips
,”
Algorithmica
0178-4617,
2
(
1-4
), pp.
541
558
.
19.
Kirkpatrick
,
D.
,
Mishra
,
B.
, and
Yap
,
C.
, 1990, “
Quantitative Steinitz’s Theorem With Applications to Multi-Fingered Grasping
,”
Proceedings of the 22nd ACM Symposium on Theory of Computing
, pp.
341
351
.
20.
Ferrari
,
C.
, and
Canny
,
J.
, 1992, “
Planning Optimal Grasps
,”
IEEE International Conference on Robotics and Automation
, pp.
2290
2295
.
21.
Zheng
,
Y.
, and
Qian
,
W. -H.
, 2008, “
A 3-D Modular Fixture With Enhanced Localization Accuracy and Immobilization Capability
,”
Int. J. Mach. Tools Manuf.
0890-6955,
48
(
6
), pp.
677
687
.
22.
Lay
,
S. R.
, 1982,
Convex Sets and Their Applications
,
Wiley
,
New York
.
23.
Leon
,
S. J.
, 1998,
Linear Algebra With Applications
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
24.
Zheng
,
Y.
, and
Qian
,
W. -H.
, 2006, “
An Enhanced Ray-Shooting Approach to Force-Closure Problems
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
128
(
4
), pp.
960
968
.
You do not currently have access to this content.