A novel shock processing by high-intensity pulsed ion beam (HIPIB) is developed, referred to as ion beam shock processing (IBSP), for surface processing of components with high surface integrity. The IBSP utilizes effectively coupled thermal-dynamic effects of HIPIB irradiation onto materials, characterized by ultrafast surface remelting and solidification, and controlled ablation. As a result, using the IBSP treatment with HIPIB parameters with an ion energy of 200–400 keV and an ion current density of 50400A/cm2 with a pulse width of 75 ns, i.e., a power density of 107108W/cm2, hardening extending to tens and hundreds of micrometers in depth is achieved on pure Cu and 316L austenitic stainless steel, which is comparable to that of laser shock processing at about two orders higher power density, usually no less than 1091010W/cm2. Significant improvements in the overall performance including wear and corrosion resistance, fatigue, and creep properties are found for IBSP treated pure Cu and 316L stainless steel, attributable to the formation of nonequilibrium microstructures into different depths of the processed materials, e.g., amorphous and/or nanocrystalline structure in the heat-affected zone, and high-density defects in the deeper regions with residual compressive stresses caused by shock wave propagation into substrate in which the former is not obtainable in conventional shock processing. Furthermore, purified and polished surfaces free of cracks can be obtained simultaneously under HIPIB irradiation, composing the completeness for effectively enhancing the surface integrity of the processed materials. The coupled thermal-dynamic effects of IBSP assure surface processing of high surface integrity for components, with improved physical and chemical properties and modified surface topography.

1.
Montross
,
C. S.
,
Wei
,
T.
,
Ye
,
L.
,
Clark
,
G.
, and
Mai
,
Y. -W.
, 2002, “
Laser Shock Processing and Its Effects on Microstructure and Properties of Metal Alloys: A Review
,”
Int. J. Fatigue
0142-1123,
24
, pp.
1021
1036
.
2.
Soyama
,
H.
,
Park
,
J. D.
, and
Saka
,
M.
, 2000, “
Use of Cavitating Jet for Introducing Compressive Residual Stress
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
122
, pp.
83
89
.
3.
Soyama
,
H.
,
Macodiyo
,
D. O.
, and
Mall
,
S.
, 2004, “
Compressive Residual Stress Into Titanium Alloy Using Cavitation Shotless Peening Method
,”
Tribol. Lett.
1023-8883,
17
, pp.
501
504
.
4.
Anderholm
,
N. C.
, 1970, “
Laser-Generated Stress Waves
,”
Appl. Phys. Lett.
0003-6951,
16
, pp.
113
115
.
5.
Rockstroh
,
T. J.
,
Barbe
,
R. O.
, and
Mannava
,
S. R.
, 2007, “
Countering Laser Shock Peening Induced Airfoil Twist Using Shot Peening
,” U.S. Patent No. 7,217,102, and referenced US patents therein.
6.
Warren
,
A. W.
,
Guo
,
Y. B.
, and
Chen
,
S. C.
, 2008, “
Massive Parallel Laser Shock Peening: Simulation, Analysis, and Validation
,”
Int. J. Fatigue
0142-1123,
30
, pp.
188
197
.
7.
El-Dasher
,
B. S.
,
Zaleski
,
T. M.
,
Gray
,
J. J.
,
Rybak
,
S. J.
, and
Chen
,
H. -L.
, 2006, “
Surface Deformation Behavior of Beta Solution Treated and Overaged Ti-6Al-4V During Laser Shock Processing
,”
J. Appl. Phys.
0021-8979,
99
, p.
103506
.
8.
Davis
,
H. A.
,
Remnev
,
G. E.
,
Stinnett
,
R. W.
, and
Yatsui
,
K.
, 1996, “
Intense Ion-Beam Treatment of Materials
,”
MRS Bull.
0883-7694,
21
, pp.
58
62
.
9.
Renk
,
T. J.
,
Provencio
,
P. P.
,
Prasad
,
S. V.
,
Shlapakovski
,
A. S.
,
Petrov
,
A. V.
,
Yatsui
,
K.
,
Jiang
,
W.
, and
Suematsu
,
H.
, 2004, “
Materials Modification Using Intense Ion Beam
,”
Proc. IEEE
0018-9219,
92
, pp.
1057
1081
.
10.
Rej
,
D. J.
,
Davis
,
H. A.
,
Nastasi
,
M.
,
Olson
,
J. C.
,
Peterson
,
E. J.
,
Reiswig
,
R. D.
,
Walter
,
K. C.
,
Stinnett
,
R. W.
,
Remnev
,
G. E.
, and
Struts
,
V. K.
, 1997, “
Surface Modification of AISI-4620 Steel With Intense Pulsed Ion Beams
,”
Nucl. Instrum. Methods Phys. Res. B
0168-583X,
127–128
, pp.
987
991
.
11.
Akamatsu
,
H.
,
Ikeda
,
T.
,
Azuma
,
K.
,
Fujiwara
,
E.
, and
Yatsuzuka
,
M.
, 2001, “
Surface Treatment of Steel by Short Pulsed Injection of High-Power Ion Beam
,”
Surf. Coat. Technol.
0257-8972,
136
, pp.
269
272
.
12.
Korotaev
,
A. D.
,
Tyumentsev
,
A. N.
,
Pinzhin
,
Yu. P.
, and
Remnev
,
G. E.
, 2004, “
Features of the Morphology, Defect Substructure, and Phase Composition of Metal and Alloy Surfaces Upon High-Power Ion Beam Irradiation
,”
Surf. Coat. Technol.
0257-8972,
185
, pp.
38
49
.
13.
Lavrentiev
,
V.
,
Hammerl
,
C.
,
Rauschenbach
,
B.
, and
Kukharenko
,
O.
, 2001, “
Formation of Hardened Surface Layers in Titanium Under Irradiation With Intense Ion Beams
,”
Scr. Mater.
1359-6462,
44
, pp.
625
630
.
14.
Lei
,
M. K.
,
Dong
,
Z. H.
,
Zhang
,
Z.
,
Hu
,
Y. F.
, and
Zhu
,
X. P.
, 2007, “
Wear and Corrosion Resistance of Ti6Al4V Alloy Irradiated by High-Intensity Pulsed Ion Beam
,”
Surf. Coat. Technol.
0257-8972,
201
, pp.
5613
5616
.
15.
Zhu
,
X. P.
,
Lei
,
M. K.
,
Dong
,
Z. H.
,
Miao
,
S. M.
, and
Ma
,
T. C.
, 2003, “
Crater Formation on the Surface of Titanium Irradiated by a High-Intensity Pulsed Ion Beam
,”
Surf. Coat. Technol.
0257-8972,
173
, pp.
105
110
.
16.
Tokuchi
,
A.
,
Ninomiya
,
N.
,
Jiang
,
W.
, and
Yatsui
,
K.
, 2002, “
Repetitive Pulsed-Power Generator “ETIGO-IV”
,”
IEEE Trans. Plasma Sci.
0093-3813,
30
, pp.
1637
1641
.
17.
Bystritskii
,
Vit.
,
Garate
,
E.
,
Rostoker
,
N.
,
Song
,
Y.
,
VanDrie
,
A.
,
Anderson
,
M.
,
Qerushi
,
A.
,
Dettrick
,
S.
,
Binderbauer
,
M.
,
Walters
,
J. K.
,
Matvienko
,
V.
,
Petrov
,
A.
,
Shlapakovsky
,
A.
,
Polkovnikova
,
N.
, and
Isakov
,
I.
,2004, “
Generation and Transport of a Low Energy Intense Ion Beam
,”
J. Appl. Phys.
0021-8979,
96
, pp.
1249
1256
.
18.
Werner
,
Z.
,
Piekoszewski
,
J.
, and
Szymczyk
,
W.
, 2001, “
Generation of High-Intensity Pulsed Ion and Plasma Beams for Material Processing
,”
Vacuum
0042-207X,
63
, pp.
701
708
.
19.
Zhu
,
X. P.
,
Lei
,
M. K.
, and
Ma
,
T. C.
, 2002, “
Characterization of a High-Intensity Bipolar-Mode Pulsed Ion Source for Surface Modification of Materials
,”
Rev. Sci. Instrum.
0034-6748,
73
, pp.
1728
1733
.
20.
Zhu
,
X. P.
,
Lei
,
M. K.
,
Dong
,
Z. H.
, and
Ma
,
T. C.
, 2003, “
Characterization of a High-Intensity Unipolar-Mode Pulsed Ion Source With Improved Magnetically Insulated Diode
,”
Rev. Sci. Instrum.
0034-6748,
74
, pp.
47
52
.
21.
Zhu
,
X. P.
,
Dong
,
Z. H.
,
Han
,
X. G.
,
Xin
,
J. P.
, and
Lei
,
M. K.
, 2007, “
Lifetime of Anode Polymer in Magnetically Insulated Ion Diodes for High-Intensity Pulsed Ion Beam generation
,”
Rev. Sci. Instrum.
0034-6748,
78
, p.
023301
.
22.
Davis
,
H. A.
,
Wood
,
B. P.
,
Munson
,
C. P.
,
Bitteker
,
L. J.
,
Nastasi
,
M. A.
,
Rej
,
D. J.
,
Waganaar
,
W. J.
,
Walter
,
C. K.
,
Coates
,
D. M.
, and
Schleinitz
,
H. M.
, 1998, “
Ion Beam and Plasma Technology Development for Surface Modification at Los Alamos National Laboratory
,”
Mater. Chem. Phys.
0254-0584,
54
, pp.
213
218
.
23.
Noonan
,
W. A.
,
Glidden
,
S. C.
,
Greenly
,
J. B.
, and
Hammer
,
D. A.
, 1995, “
Design and Operation of a High Pulse Rate Intense Ion Beam Diode
,”
Rev. Sci. Instrum.
0034-6748,
66
, pp.
3448
3458
.
24.
Renk
,
T. J.
,
Provencio
,
P. P.
,
Tanaka
,
T. J.
,
Olson
,
C. L.
,
Peterson
,
R. R.
,
Stolp
,
J. E.
,
Schroen
,
D. G.
, and
Knowles
,
T. R.
, 2005, “
Chamber Wall Materials Response to Pulsed Ions at Power-Plant Level Fluences
,”
J. Nucl. Mater.
0022-3115,
347
, pp.
266
288
.
25.
Boiko
,
V. I.
,
Kishkin
,
V. P.
, and
Shamanin
,
I. V.
, 1991, “
On Extreme Dynamic Parameters of a Powerful Ion Beam-Metallic Target System
,”
Phys. Status Solidi B
0370-1972,
165
, pp.
75
80
.
26.
Jiang
,
W.
,
Hashimoto
,
N.
,
Shinkai
,
H.
,
Ohtomo
,
K.
, and
Yatsui
,
K.
, 1998, “
Characteristics of Ablation Plasma Produced by Pulsed Light Ion Beam Interaction With Targets and Applications to Materials Science
,”
Nucl. Instrum. Methods Phys. Res. A
0168-9002,
415
, pp.
533
538
.
27.
Miao
,
S. M.
,
Zhu
,
X. P.
, and
Lei
,
M. K.
, 2005, “
Numerical Analysis of Ablated Behaviors on Titanium Irradiated by High-Intensity Pulsed Ion Beam
,”
Nucl. Instrum. Methods Phys. Res. B
0168-583X,
229
, pp.
381
391
.
28.
Torkar
,
M.
, 2006, “
Corrosion of AISI 316 Ti in 50% KOH Due to Deformation Induced Martensite
,”
Eng. Failure Anal.
1350-6307,
13
, pp.
624
628
.
29.
Gutier
,
P.
,
Darbeïda
,
A.
,
Billard
,
A.
,
Frantz
,
C.
, and
von Stebut
,
J.
, 1999, “
Tribological Behaviour of N- or O-Doped Austenitic Stainless-Steel Magnetron Sputter-Deposited Coatings
,”
Surf. Coat. Technol.
0257-8972,
114
, pp.
148
155
.
30.
Ma
,
X.
,
Jiang
,
S.
,
Sun
,
Y.
,
Tang
,
G.
, and
Sun
,
M.
, 2007, “
Elevated Temperature Nitrogen Plasma Immersion Ion Implantation of AISI 302 Austenitic Stainless Steel
,”
Surf. Coat. Technol.
0257-8972,
201
, pp.
6695
6698
.
31.
Yasumaru
,
N.
,
Tsuchida
,
K.
,
Saji
,
E.
, and
Ibe
,
T.
, 1993, “
Mechanical Properties of Type 304 Austenitic Stainless Steel Coated With Titanium Nitride After Ion Nitriding
,”
Mater. Trans., JIM
0916-1821,
34
, pp.
696
702
.
You do not currently have access to this content.