Layered manufacturing (LM) processes have emerged as legitimate processes for manufacturing various precision microelectronic components and bio-implants. These processes are also being considered for fabricating large customized free forms like buildings, statues, reactor beds, and car bodies. Many of these applications demand high levels of quality (e.g., Ra<0.1μm) and functional performance. Among the LM processes, extrusion-based processes can potentially offer high production rates together with lower setup and operating costs. Yet process failures resulting from anomalies, such as nozzle clogging, overflow, dynamic instabilities, bambooing, and machine degradation impede a widespread applicability of these processes. Scientific principles that relate the sources of these anomalies to process dynamics seem necessary for effective quality monitoring. In this paper we present a nonlinear lumped-mass model to capture dynamics underlying contour crafting, which is an extrusion-based LM process. The two degrees-of-freedom model, developed based on experimental characterizations, captures salient features of the process dynamics including the prominent manifestations of process nonlinearity. Experimental investigations show that the model can lead to effective monitoring of process conditions including overflow and underflow of material from extrusion nozzle, as well as suboptimal (fast and slow) feed rates of the extrusion head.

1.
Khoshnevis
,
B.
, 1998, “
Innovative Rapid Prototyping Process for Large Sized, Smooth Surfaced Complex Shapes in Wide Variety of Materials
,”
J. Mater. Technol.
,
13
(
2
), pp.
52
63
.
2.
Jafari
,
M. A.
,
Safari
,
A. S.
,
Danforth
,
S. C.
, and
Langrana
,
N.
, 1998, “
Advanced Machine and Process Control in Layered Manufacturing
,”
Proceedings of the Seventh European Workshop on Rapid Prototyping and Manufacturing
,
Aachen
,
Germany
, July.
3.
Saotome
,
Y.
, and
Iwazaki
,
H.
, 2000, “
Superplastic Extrusion of Microgear Shaft of 10 μm in Module
,”
Microsyst. Technol.
0946-7076,
6
(
4
), pp.
126
129
.
4.
Yardimici
,
M. A.
,
Guceri
,
S. I.
, and
Danforth
,
S. C.
, 1997, “
Thermal Analysis of Fused Deposition
,”
Proceedings of Solid Freeform Fabrication Conference
,
D. L.
Bourell
,
J. J.
Beaman
,
R. H.
Crawford
,
H. L.
Marcus
, and
J. W.
Barlow
, eds., August,
University of Texas
,
Texas
, pp.
689
698
.
5.
Fang
,
T.
,
Jafari
,
M. A.
,
Danforth
,
S. C.
, and
Safari
,
A.
, 2003, “
Signature analysis and defect detection in layered manufacturing of ceramic sensors and actuators
,”
Machine Vision and Applications
,
15
(
2
), pp.
63
75
.
6.
Han
,
W.
,
Jafari
,
M. A.
,
Danforth
,
S. C.
, and
Safari
,
A. S.
, 2002, “
Tool Path-Based Deposition Planning in Fused Deposition Processes
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
124
(
2
), pp.
462
472
.
7.
Farrar
,
C. R.
,
Doebling
,
S. W.
, and
Nix
,
D. A.
, 2001, “
Vibration-Based Structural Damage Identification
,”
Philos. Trans. R. Soc. London, Ser. A
0962-8428,
359
, pp.
131
149
.
8.
Denn
,
M. M.
, 2001, “
Extrusion Instabilities and Wall Slip
,”
Annu. Rev. Fluid Mech.
0066-4189,
33
, pp.
265
.
9.
Dubbeldam
,
J. L. A.
, and
Molenaar
,
J.
, 2003, “
Dynamics of Spurt Instability in Polymer Extrusion
,”
J. Non-Newtonian Fluid Mech.
0377-0257,
112
, pp.
217
235
.
10.
Kwon
,
H.
,
Bukkapatnam
,
S. T. S.
,
Khoshnevis
,
B.
, and
Saito
,
J.
, 2002, “
Effect of Orifice Geometry on Surface Quality in Contour Crafting
,”
Rapid Prototyping J.
1355-2546,
8
(
3
), pp.
147
160
.
11.
Johnson
,
R. E.
, and
Cherukuri
,
H.
, 1997, “
Chatter Dynamics in Sheet Rolling Processes
,” in
Dynamics and Chaos in Manufacturing Processes
,
F. C.
Moon
, ed.,
Wiley
, New York, pp.
83
118
.
12.
Ulysse
,
P.
, and
Johnson
,
R. E.
, 1999, “
A Die Design Model for Thin Section Extrusions
,”
Int. J. Mech. Sci.
0020-7403,
41
, pp.
1067
1088
.
13.
Chiang
,
H. H.
,
Hieber
,
C. A.
, and
Wang
,
K. K.
, 1991, “
A Unified Simulation of the Filling and Postfilling Stages in Injection Molding. II. Experimental Verification
,”
Polym. Eng. Sci.
0032-3888,
31
(
2
), pp.
125
139
.
14.
Haley
,
T. A.
, and
Mulvaney
,
S. J.
, 1995, “
Advanced Process Control Techniques for the Food Industry
,”
Trends Food Sci. Technol.
,
6
(
4
), pp.
103
110
.
15.
Moreira
,
R.
, 2001,
Automatic Control for Food Processing Systems
,
Aspen
,
Gaithersburg, MD
, p.
333
.
16.
Mulvaney
,
S. J.
, and
Hsieh
,
F. H.
, 1988, “
Process Control for Extrusion Operations
,”
Cereal Foods World
0146-6283,
33
(
12
), pp.
971
976
.
17.
Onwulata
,
C. I.
,
Mulvaney
,
S. J.
, and
Hsieh
,
F.
, 1994, “
Systems Analysis as the Basis for Control of Density of Extruded Cornmeal
,”
Food Control
,
5
(
1
), pp.
39
48
.
18.
Bukkapatnam
,
S. T. S.
,
Lakhtakia
,
A.
, and
Kumara
,
S. R. T.
, 1995, “
Analysis of Sensor Signals Shows Turning on a Lathe Exhibits Low-Dimensional Chaos
,”
Phys. Rev. E
1063-651X,
52
(
3
), pp.
2375
2387
.
19.
Bukkapatnam
,
S. T. S.
, and
Palanna
,
R.
, 2004, “
Experimental Characterization of Nonlinear Dynamics of Cylindrical Grinding Process
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
126
(
2
), pp.
341
344
.
20.
Rauwendaal
,
C.
, 2001,
Polymer Extrusion
,
Hanser
, New York.
21.
Kennedy
,
P.
, 1995,
Flow Analysis of Injection Molds
,
Hanser
, February.
22.
Najmi
,
L. A.
, and
Lee
,
D.
, 1991, “
Modeling of Mold Filling Process for Powder Injection Molding
,”
Polym. Eng. Sci.
0032-3888,
31
(
15
), pp.
1137
1139
.
23.
Hieber
,
C. A.
, and
Shen
,
S.
, 1980, “
Finite Element/Finite Difference Simulation of the Injection Molding Filling Process
,”
J. Non-Newtonian Fluid Mech.
0377-0257,
7
, pp.
1
8
.
24.
Jiang
,
B.-Y.
,
Zhong
,
J.
,
Huang
,
B.
,
Qu
,
X.
, and
Li
,
Y.
, 2003, “
Element Modeling of FEM on the Pressure Field in the Powder Injection Mold Filling Process
,”
J. Mater. Process. Technol.
0924-0136,
137
(
1
), pp.
74
77
.
25.
Chen
,
B. S.
, and
Liu
,
W. H.
, 1989, “
Numerical Simulation and Experimental Investigation of Injection Mold Filling With Melt Solidification
,”
Polym. Eng. Sci.
0032-3888,
29
(
15
), pp.
1041
1043
.
26.
Kackley
,
R.
, and
McCully
,
S.
, 1992, “
Stepper Motor Instabilities in an Aerospace Application
,”
NASA Conf. Publ.
0191-7811
3147
,
1315
, May.
27.
Zoetelief
,
W. F.
,
Douven
,
L. F. A.
, and
Ingen Housz
,
A. J.
, 2004, “
Residual Thermal Stresses in Injection Molded Products
,”
Polym. Eng. Sci.
0032-3888,
36
(
14
), pp.
1886
1896
.
28.
He
,
J.
, and
Fu
,
Z.-F.
, 2001,
Modal Analysis
,
Butterworth
, London.
29.
Montgomery
,
D. C.
, 2005,
Design and Analysis of Experiments
,
Wiley
, New York.
30.
Hagan
,
M. T.
, and
Menhaj
,
M.
, 1994, “
Training Feedforward Networks With the Marquardt Algorithm
,”
IEEE Trans. Neural Netw.
1045-9227,
5
(
6
), pp.
989
993
.
31.
Palanna
,
R.
,
Bukkapatnam
,
S. T. S.
, and
Settles
,
F. S.
, 2003, “
Model-Based Tampering for Improved Process Performance: Application to Grinding of Shafts
,”
SME J. Manuf. Process.
,
5
(
1
), pp.
24
32
.
32.
Bukkapatnam
,
S. T. S.
, 1999, “
Compact Nonlinear Signal Representation in Machine Tool Operations
,”
ASME Design Engineering and Technology Conference
, DETC-VIB 8068, September 12–15, Las Vegas.
You do not currently have access to this content.