A two degree of freedom model of the milling process is investigated. The governing equation of motion is decomposed into two parts: an ordinary differential equation describing the periodic chatter-free motion of the tool and a delay-differential equation describing chatter. The stability chart is derived by using the semi-discretization method for the delay-differential equation corresponding to the chatter motion. The periodic chatter-free motion of the tool and the associated surface location error (SLE) are obtained by a conventional solution technique of ordinary differential equations. It is shown that the SLE is large at the spindle speeds where the ratio of the dominant frequency of the tool and the tooth passing frequency is an integer. This phenomenon is explained by the large amplitude of the periodic chatter-free motion of the tool at these resonant spindle speeds. It is shown that large stable depths of cut with a small SLE can still be attained close to the resonant spindle speeds by using the SLE diagrams associated with stability charts. The results are confirmed experimentally on a high-speed milling center.

1.
Tlustý
,
J.
,
Poláček
,
A.
,
Danêk
,
C.
,
Špaček
,
J.
, 1962,
Selbsterregte Schwingungen an Werkzeugmaschinen
,
VEB Verlag Technik
, Berlin.
2.
Tobias
,
S. A.
, 1965,
Machine Tool Vibration
,
Blackie
, London.
3.
Stépán
,
G.
, 1989,
Retarded Dynamical Systems
,
Longman
, Harlow.
4.
Smith
,
S.
, and
Tlustý
,
J.
, 1991, “
An Overview of Modeling and Simulation of the Milling Process
,”
ASME J. Eng. Ind.
0022-0817,
113
, pp.
169
175
.
5.
Li
,
H.
, and
Li
,
X.
, 2000, “
Modelling and Simulation of Chatter in Milling Using a Predictive Force Model
,”
Int. J. Mach. Tools Manuf.
0890-6955,
40
, pp.
2047
2071
.
6.
Zhao
,
M. X.
, and
Balachandran
,
B.
, 2001, “
Dynamics and Stability of Milling Process
,”
Int. J. Solids Struct.
0020-7683,
38
(
10–13
), pp.
2233
2248
.
7.
Campomanes
,
M. L.
, and
Altintas
,
Y.
, 2003, “
An Improved Time Domain Simulation for Dynamic Milling at Small Radial Immersions
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
125
(
3
), pp.
416
422
.
8.
Xu
,
A.-P.
,
Qu
,
Y.-X.
,
Zhang
,
D.-W.
, and
Huang
,
T.
, 2003, “
Simulation and Experimental Investigation of the End Milling Process Considering the Cutter Flexibility
,”
Int. J. Mach. Tools Manuf.
0890-6955,
43
, pp.
283
292
.
9.
Paris
,
H.
,
Peigné
,
G.
, and
Mayer
,
R.
, 2004, “
Surface Shape Prediction in High Speed Milling
,”
Int. J. Mach. Tools Manuf.
0890-6955,
44
(
15
), pp.
1591
1597
.
10.
Altintas
,
Y.
, and
Budak
,
E.
, 1995, “
Analytical Prediction of Stability Lobes in Milling
,”
CIRP Ann.
0007-8506,
44
(
1
), pp.
357
362
.
11.
Tian
,
J.
, and
Hutton
,
S. G.
, 2001, “
Chatter Instability in Milling Systems With Flexible Rotating Spindles—A New Theoretical Approach
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
123
(
1
), pp.
1
9
.
12.
Davies
,
M. A.
,
Pratt
,
J. R.
,
Dutterer
,
B.
, and
Burns
,
T. J.
, 2002, “
Stability Prediction for Low Radial Immersion Milling
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
124
(
2
), pp.
217
225
.
13.
Bayly
,
P. V.
,
Halley
,
J. E.
,
Mann
,
B. P.
, and
Davies
,
M. A.
, 2003, “
Stability of Interrupted Cutting by Temporal Finite Element Analysis
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
125
(
2
), pp.
220
225
.
14.
Faassen
,
R. P. H.
,
van de Wouw
,
N.
,
Oosterling
,
J. A. J.
, and
Nijmeijer
,
H.
, 2003, “
Prediction of Regenerative Chatter by Modeling and Analysis of High-Speed Milling
,”
Int. J. Mach. Tools Manuf.
0890-6955,
43
(
14
), pp.
1437
1446
.
15.
Insperger
,
T.
,
Mann
,
B. P.
,
Stépán
,
G.
, and
Bayly
,
P. V.
, 2003, “
Stability of Up-Milling and Down-Milling, Part 1: Alternative Analytical Methods
,”
Int. J. Mach. Tools Manuf.
0890-6955,
43
(
1
), pp.
25
34
.
16.
Szalai
,
R.
, and
Stépán
,
G.
, 2003, “
Stability Boundaries of High-Speed Milling Corresponding to Period Doubling Are Essentially Closed Curves
,”
Proceedings of ASME International Mechanical Engineering Conference and Exposition
, Washington, DC, Paper No. IMECE2003-42122 (CD-ROM).
17.
Wang
,
J.-J. J.
,
Zheng
,
C. M.
, and
Huang
,
C. Y.
, 2003,
The Effect of Harmonic Force Components on Regenerative Stability in End Milling
,”
Proceedings of the 2003 ASME International Mechanical Engineering Congress and Exposition, Washington, DC
, Paper No. IMECE2003-42367 (CD-ROM).
18.
Merdol
,
S. D.
, and
Altintas
,
Y.
, 2004, “
Multi Frequency Solution of Chatter Stability for Low Immersion Milling
,
ASME J. Manuf. Sci. Eng.
1087-1357,
126
(
3
), pp.
459
466
.
19.
Corpus
,
W. T.
, and
Endres
,
W. J.
, 2004, “
Added Stability Lobes in Machining Processes That Exhibit Periodic Time Variation—Part 1: An Analytical Solution
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
126
(
3
), pp.
467
474
.
20.
Insperger
,
T.
,
Stépán
,
G.
,
Bayly
,
P. V.
, and
Mann
,
B. P.
, 2003, “
Multiple Chatter Frequencies in Milling Processes
,”
J. Sound Vib.
0022-460X,
262
(
2
), pp.
333
345
.
21.
Gradišek
,
J.
,
Friedrich
,
R.
,
Govekar
,
E.
, and
Grabec
,
I.
, 2002, “
Analysis of Data From Periodically Forced Stochastic Processes
,”
Phys. Lett. A
0375-9601,
294
(
3–4
), pp.
234
238
.
22.
Bravo
,
U.
,
Altuzarra
,
O.
,
López de Lacalle
,
L. N.
,
Sánchez
,
J. A.
, and
Campa
,
F. J.
, 2005, “
Stability Limits of Milling Considering the Flexibility of the Workpiece and the Machine
,”
Int. J. Mach. Tools Manuf.
0890-6955,
45
, pp.
1669
1680
.
23.
Kivanc
,
E. B.
, and
Budak
,
E.
, 2004, “
Structural Modeling of End Mills for Form Error and Stability Analysis
,”
Int. J. Mach. Tools Manuf.
0890-6955,
44
(
11
), pp.
1151
1161
.
24.
Schmitz
,
T. L.
,
Davies
,
M. A.
, and
Kennedy
,
M. D.
, 2001, “
Tool Point Frequency Response Prediction for High-Speed Machining by RCSA
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
123
(
4
), pp.
700
707
.
25.
Young
,
K. A.
, and
Helvey
,
A. M.
, 2003, “
Requirements for Consistent and Productive Performance in High Speed Milling
,”
Proceedings of the 2003 ASME International Mechanical Engineering Congress and Exposition
, Washington, DC, Paper No. IMECE2003-41694 (CD-ROM).
26.
Kline
,
W. A.
,
Devor
,
R. E.
, and
Shareef
,
I.
, 1982, “
Prediction of Surface Accuracy in End Milling
,
ASME J. Eng. Ind.
0022-0817,
104
, pp.
272
278
.
27.
Sutherland
,
J. W.
, and
DeVor
,
R. E.
, 1986, “
An Improved Method for Cutting Force and Surface Error Prediction in Flexible End Milling Systems
,
ASME J. Eng. Ind.
0022-0817,
108
, pp.
269
279
.
28.
Montgomery
,
D.
, and
Altintas
,
Y.
, 1991, “
Mechanism of Cutting Force and Surface Generation in Dynamic Milling
,”
ASME J. Eng. Ind.
0022-0817,
113
, pp.
160
168
.
29.
Shirase
,
K.
, and
Altintas
,
Y.
, 1996, “
Cutting Force and Dimensional Surface Error Generation in Peripheral Milling With Variable Pitch Helical End Mills
,”
Int. J. Mach. Tools Manuf.
0890-6955,
36
(
5
), pp.
567
584
.
30.
Schmitz
,
T.
, and
Ziegert
,
J.
, 1999, “
Examination of Surface Location Error Due to Phasing of Cutter Vibrations
,”
Precis. Eng.
0141-6359,
23
, pp.
51
62
.
31.
Mann
,
B. P.
,
Bayly
,
P. V.
,
Davies
,
M. A.
, and
Halley
,
J. E.
, 2004, “
Limit Cycles, Bifurcations, and Accuracy of the Milling Process
,”
J. Sound Vib.
0022-460X,
277
(
1–2
), pp.
31
48
.
32.
Mann
,
B. P.
,
Young
,
K. A.
,
Schmitz
,
T. L.
, and
Dilley
,
D. N.
, 2005, “
Simultaneous Stability and Surface Location Error Predictions in Milling
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
127
(
3
), pp.
446
453
.
33.
Insperger
,
T.
, and
Stépán
,
G.
, 2002, “
Semi-Discretization Method for Delayed Systems
,”
Int. J. Numer. Methods Eng.
0029-5981,
55
(
5
), pp.
503
518
.
34.
Insperger
,
T.
, and
Stépán
,
G.
, 2004, “
Updated Semi-Discretization Method for Periodic Delay-Differential Equations With Discrete Delay
,”
Int. J. Numer. Methods Eng.
0029-5981,
61
(
1
), pp.
117
141
.
35.
Stépán
,
G.
,
Szalai
,
R.
,
Mann
,
B. P.
,
Bayly
,
P. V.
,
Insperger
,
T.
,
Gradišek
,
J.
, and
Govekar
,
E.
, 2005, “
Nonlinear Dynamics of High-Speed Milling—Analyses, Numerics and Experiments
,”
ASME J. Vibr. Acoust.
0739-3717,
127
(
2
), pp.
197
203
.
36.
Lipski
,
J.
,
Litak
,
G.
,
Rusinek
,
R.
,
Szabelski
,
K.
,
Teter
,
A.
,
Warmiński
,
J.
, and
Zaleski
,
K.
, 2002, “
Surface Quality of a Work Material’s Influence on the Vibrations of the Cutting Process
,”
J. Sound Vib.
0022-460X,
252
(
4
), pp.
729
737
.
37.
Peigne
,
G.
,
Paris
,
H.
,
Brissaud
,
D.
, and
Gouskov
,
A.
, 2004, “
Impact of the Cutting Dynamics of Small Radial Immersion Milling Operations on Machined Surface Roughness
,
Int. J. Mach. Tools Manuf.
0890-6955,
44
(
11
), pp.
1133
1142
.
38.
Lazoglu
,
I.
, and
Liang
,
S. Y.
, 1997, “
Analytical Modeling of Ball-End Milling Forces
,”
Mach. Sci. Technol.
1091-0344,
1
(
2
), pp.
219
234
.
39.
Budak
,
E.
, and
Altintas
,
Y.
, 1998, “
Analytical Prediction of Chatter Stability in Milling—Part I: General Formulation
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
120
, pp.
22
30
.
40.
Budak
,
E.
, and
Altintas
,
Y.
, 1998, “
Analytical Prediction of Chatter Stability in Milling—Part II: Application of the General Formulation to Common Milling Systems
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
120
, pp.
31
36
.
41.
Gradišek
,
J.
,
Kalveram
,
M.
, and
Weinert
,
K.
, 2004, “
Mechanistic Identification of Specific Force Coefficients for a General End Mill
,”
Int. J. Mach. Tools Manuf.
0890-6955,
44
(
4
), pp.
401
414
.
42.
Gradišek
,
J.
,
Kalveram
,
M.
,
Insperger
,
T.
,
Weinert
,
K.
,
Stépán
,
G.
,
Govekar
,
E.
, and
Grabec
,
I.
, 2005, “
On Stability Prediction for Milling
,”
Int. J. Mach. Tools Manuf.
0890-6955,
45
(
7–8
), pp.
741
991
.
43.
Li
,
H. Z.
,
Liu
,
K.
, and
Li
,
X. P.
, 2001, “
A New Method for Determining the Undeformed Chip Thickness in Milling
,”
J. Mater. Process. Technol.
0924-0136,
113
, pp.
378
384
.
44.
Faassen
,
R.
,
van de Wouw
,
N.
,
Oosterling
,
H.
, and
Nijmeijer
,
H.
, 2005, “
Updated Tool Path Modelling With Periodic Delay for Chatter Prediction in Milling
,”
Proceedings of the Fifth EUROMECH Nonlinear Dynamics Conference
,
Eindhoven
, The Netherlands, pp.
1080
1089
.
You do not currently have access to this content.