This paper discusses the development of an enhanced, static model of chip formation in micromilling processes that is able to describe the intermittency of the chip formation observed at low feeds per tooth due to the dominance of the minimum chip thickness effect. Experimental analyses demonstrate the validity of the proposed model by verifying the level of periodicity in the cutting forces present at various feeds per tooth. A key finding of this study is the identification of a local maximum in the radial thrust forces in the micromilling process during the noncutting regime, at feeds per tooth that are of the order of the minimum chip thickness. To overcome the challenges in the direct measurement of the minimum chip thickness, this paper presents a method for estimating the minimum chip thickness of various combinations of tools and workpiece materials based on easily attainable cutting-force data. A discussion on the selection of process parameters to avoid intermittent chip formation is also presented.

1.
Kussul
,
E. M.
,
Rachkovskij
,
D. A.
,
Baidyk
,
T. N.
, and
Talayev
,
S. A.
,
1996
, “
Micromechanical Engineering: A Basis for the Low-Cost Manufacturing of Mechanical Microdevices Using Microequipment
,”
J. Micromech. Microeng.
,
6
, pp.
410
425
.
2.
Masuzawa
,
T.
, and
Tonshoff
,
H. K.
,
1997
, “
Three-Dimensional Micromachining by Machine Tools
,”
CIRP Ann.
,
46
, pp.
621
628
.
3.
Vasile
,
M. J.
,
Friedrich
,
C. R.
,
Kikkeri
,
B.
, and
Mcelhannon
,
R.
,
1996
, “
Micrometer-Scale Machining: Tool Fabrication and Initial Results
,”
Precision Eng.
,
19
, pp.
180
186
.
4.
Weck
,
M.
,
Fischer
,
S.
, and
Vos
,
M.
,
1997
, “
Fabrication of Microcomponents Using Ultraprecision Machine Tools
,”
Nanotechnology
,
8
, pp.
145
148
.
5.
Friedrich
,
C.
,
Coane
,
P.
,
Goettert
,
J.
, and
Gopinathin
,
N.
,
1998
, “
Direct Fabrication of Deep X-Ray Lithography Masks by Micromechanical Milling
,”
Precision Eng.
,
22
, pp.
164
173
.
6.
Schaller
,
T.
,
Bohn
,
L.
,
Mayer
,
J.
, and
Schubert
,
K.
,
1999
, “
Microstructure Grooves With a Width of Less Than 50 Micrometer Cut With Ground Hard Metal Micro End Mills
,”
Precision Eng.
,
23
, pp.
229
235
.
7.
Weule
,
H.
,
Huntrup
,
V.
, and
Tritschle
,
H.
,
2001
, “
Micro-Cutting of Steel to Meet New Requirements in Miniaturization
,”
CIRP Ann.
,
50
, pp.
61
64
.
8.
Chuzhoy
,
L.
,
Devor
,
R. E.
,
Kapoor
,
S. G.
,
Beaudoin
,
A. J.
, and
Bammann
,
D. J.
,
2003
, “
Machining Simulation of Ductile Iron and Its Constituents, Part 1: Estimation of Material Model Parameters and Their Validation
,”
ASME J. Manuf. Sci. Eng.
,
125
, pp.
181
191
.
9.
Chuzhoy
,
L.
, and
Devor
,
R. E.
,
2003
, “
Machining Simulation of Ductile Iron and Its Constituents, Part 2: Numerical Simulation and Experimental Validation of Machining
,”
ASME J. Manuf. Sci. Eng.
,
125
, pp.
192
201
.
10.
Vogler
,
M. P.
,
Devor
,
R. E.
, and
Kapoor
,
S. G.
,
2003
, “
Microstructure-Level Force Prediction Model for Micro-Milling of Multi-Phase Materials
,”
ASME J. Manuf. Sci. Eng.
,
125
, pp.
202
209
.
11.
Kim
,
C.-J.
,
Bono
,
M.
, and
Ni
,
J.
,
2002
, “
Experimental Analysis of Chip Formation in Micro-Milling
,”
Trans. NAMRI/SME
,
30
, pp.
247
254
.
12.
Martellotti
,
M. E.
,
1941
, “
An Analysis of the Milling Process
,”
Trans. ASME
,
63
, pp.
677
700
.
13.
Komanduri
,
R.
,
1971
, “
Some Aspects of Machining With Negative Rake Tools Simulating Grinding
,”
Int. J. MTDR
,
11
, pp.
223
233
.
14.
Abdelmoneim
,
M. E.
, and
Scrutton
,
R. F.
,
1973
, “
Post-Machining Plastic Recovery and the Law of Abrasive Wear
,”
Wear
,
24
, pp.
1
13
.
15.
Basuray
,
P. K.
,
Misra
,
B. K.
, and
Lal
,
G. K.
,
1977
, “
Transition From Ploughing to Cutting During Machining With Blunt Tools
,”
Wear
,
43
, pp.
341
349
.
16.
Yuan
,
Z. J.
,
Zhou
,
M.
, and
Dong
,
S.
,
1996
, “
Effect of Diamond Tool Sharpness on Minimum Cutting Thickness and Cutting Surface Integrity in Ultraprecision Machining
,”
J. Mater. Process. Technol.
,
62
, pp.
327
330
.
17.
Merchant
,
M. E.
,
1944
, “
Basic Mechanics of the Metal-Cutting Process
,”
ASME J. Appl. Mech.
,
12
, pp.
168
175
.
18.
Nakayama, K., and Tamura, K., 1967, “Size Effect in Metal-Cutting Force,” ASME Papers, Vol. 67-PROD-9, pp. 1–8.
19.
Abdelmoneim
,
M. E.
, and
Scrutton
,
R. F.
,
1974
, “
Tool Edge Roundness and Stable Build-up Formation in Finish Machining
,”
ASME J. Eng. Ind.
,
96, Ser B
, pp.
1258
1267
.
20.
Lucca
,
D. A.
, and
Seo
,
Y. W.
,
1993
, “
Effect of Tool Edge Geometry on Energy Dissipation in Ultraprecision Machining
,”
CIRP Ann.
,
42
, pp.
83
86
.
21.
Waldorf
,
D. J.
,
Devor
,
R. E.
, and
Kapoor
,
S. G.
,
1998
, “
A Slip-Line Field for Ploughing During Orthogonal Cutting
,”
ASME J. Manuf. Sci. Eng.
,
120
, pp.
693
699
.
22.
Torrence
,
C.
, and
Compo
,
G. P.
,
1998
, “
A Practical Guide to Wavelet Analysis
,”
Bull. Am. Meteorol. Soc.
,
79
, pp.
61
78
.
You do not currently have access to this content.