The generation of machining defects and their effect on bending strength characteristics are discussed with respect to a TiAl intermetallic compound, which is attracting much attention as a high-temperature structural material because of its high specific strength. The discussion focuses on the mechanism of the formation of edge chipping and machined surface cracks during cutting of a TiAl intermetallic compound. Also, some effects of these machining defects on the bending strength are clarified. The comparison of cutting results with abrasive machining results helps clarify the dependence of strength on undeformed chip thickness during chip generation of machining processes.

1.
Stoloff
,
N. S.
,
Liu
,
C. T.
, and
Deevi
,
S. C.
,
2000
, “
Emerging Applications of Intermetallics
,”
Intermetallics
,
8
, pp.
1313
1320
.
2.
Huang, S. C., and Chesnutt, J. C., 1995, Intermetallic Compounds. Principles and Practice, Vol. 2 Practice: Gamma TiAl and its Alloys, Westbrook, J. H., et al., eds., John Wiley and Sons, Chichester, UK, pp. 73–90.
3.
Banerjee, D., 1995, Intermetallic Compounds. Principles and Practice. Vol. 2 Practice: Ti3Al and its Alloys, Westbrook, J. H. et al., eds., John Wiley and Sons, Chichester, UK, pp. 91–131.
4.
Clemens, H., Eberhardt, N., Glatz, W., Martinz, H. P., Knabl, W., and Reheis, N., 1997, “Processing and Properties of Gamma Titanium Aluminides,” Proc. 2nd International Symposium on Structural Intermetallics, Nathal, M. V., et al., eds, Champion, Pennsylvania, TSM, pp. 277–286.
5.
Bartolotta, P. A., and Krause, D. L., 1999, “Titanium Aluminide Application in the High Speed Civil Transport,” Proc. 2nd International Symposium on Gamma Titanium Aluminides, Kim, Y. W., et al., eds, San Diego, California, TSM, pp. 3–10.
6.
Loria
,
E. A.
,
2000
, “
Gamma Titanium Aluminides as Prospective Structural Materials
,”
Intermetallics
,
8
, pp.
1339
1345
.
7.
Austin, C. M., Kelly, T. J., Mcallister, K. G., and Chesnutt, J. C., 1997, “Aircraft Engine Appication for Gamma Titanium Aluminides,” Proc. 2nd International Symposium on Structural Intermetallics, Nathal, M. V., et al., eds, Champion, Pennsylvania, TSM, pp. 413–425.
8.
Moll
,
J. H.
, and
McTiernan
,
B. J.
,
2000
, “
PM TiAl Alloys: The Sky’s the Limit
,”
MPR
,
55
(
1
), pp.
18
22
.
9.
Draper
,
S. L.
,
Lerch
,
B. A.
,
Pereira
,
J. M.
,
Nathal
,
M. V.
,
Austin
,
C. M.
, and
Erdmann
,
O.
,
2001
, “
The Effect of Ballistic Impacts on the High-Cycle Fatigue Properties of Ti-48Al-2Nb-2Cr(Atomic Percent)
,”
Metall. Mater. Trans. A
,
32A
(
11
), pp.
2743
2758
.
10.
Isobe, S., and Noda, T., 1997, “Automotive Application of TiAl Intermetallics,” Proc. 2nd International Symposium on Structural Intermetallics, Nathal, M. V., et al., eds, Champion, Pennsylvania, TSM, pp. 427–433.
11.
Tetsui, T., 1999, “The Effect of Composition on the Endurance of TiAl Alloys in Turbocharger Applications,” Proc. 2nd International Symposium on Gamma Titanium Aluminides, Kim, Y. W., et al., eds, San Diego, California, TSM, pp. 15–23.
12.
Tetsui
,
T.
,
2000
, “
Characteristics of TiAl as a High-Temperature Structural Material and Practical Application Efforts Centered on Turbochargers for Passenger Vehicles
,”
J. Jpn. Inst. Met.
,
64
(
11
), pp.
971
976
(in Japanese).
13.
Sauthoff, G., 1995, Intermetallic Compounds. Principles and Practice. Vol. 1 Principles: Plastic Deformation, Westbrook, J. H. et al., eds., John Wiley and Sons, Chichester, UK, pp. 911–934.
14.
Kimura, Y., and Pope, D. P., 1997, “Ductility and Toughness Conditions in Intermetallics,” Proc. 2nd International Symposium on Structural Intermetallics, Nathal, M. V., et al., eds, Champion, Pennsylvania, TSM, pp. 99–106.
15.
Sen
,
S.
, and
Stefanescu
,
D. M.
,
1991
, “
Melting and Casting Processes for High-Temperature Intermetallics
,”
JOM
,
4
, pp.
30
34
.
16.
Semiatin, S. L., Chesnutt, J. C., Austin, C., and Seetharaman, V., 1997, “Processing of Intermetallic Alloys,” Proc. 2nd International Symposium on Structural Intermetallics, Nathal, M. V., et al., eds, Champion, Pennsylvania, TSM, pp. 263–276.
17.
Loria
,
E. A.
,
2001
, “
Quo Vadis Gamma Titanium Aluminide
,”
Intermetallics
,
9
, pp.
997
1001
.
18.
LeHolm, R., Clemens, H., and Kestler, H., 1999, “Powder Metallurgy(PM) Gamma-Based Titanium Aluminide Structures for Use in Various High Temperature Aerospace Applications,” Proc. 2nd International Symposium on Gamma Titanium Aluminides, Kim, Y. W., et al., eds, San Diego, California, TSM, pp. 25–33.
19.
Cooper
,
K. P.
,
2000
, “
The Powder Processing of Lightweight Materials
,”
JOM
,
52
(
5
), pp.
31
31
.
20.
Ito, S., and Okuda, H., 1985, Fine Ceramics, Saito, S., eds., Elsevier, New York, pp. 218–226.
21.
Inasaki
,
I.
,
1987
, “
Grinding of Hard and Brittle Materials
,”
CIRP Ann.
,
43
(
1
), pp.
309
312
.
22.
Mayer
, Jr.,
J. E.
, and
Fang
,
G. P.
,
1994
, “
Effect of Grit Depth of Cut on Strength of Ground Ceramics
,”
CIRP Ann.
,
43
(
1
), pp.
309
312
.
23.
Hashimura
,
M.
,
Chang
,
Y. P.
, and
Dornfeld
,
D.
,
1999
, “
Analysis of Burr Formation Mechanism in Orthogonal Cutting
,”
ASME J. Manuf. Sci. Eng.
,
121
(
1
), pp.
1
7
.
24.
Niinomi
,
M.
,
Kobayashi
,
T.
,
Iwai
,
M.
,
Hirota
,
T.
,
Williams
,
J. C.
, and
Thompson
,
A. W.
,
1995
, “
Fracture Characteristics and Microstructure of Intermetallic Compound Ti-24Al-11Nb(at%)
,”
Journal of Japan Institute of Metals
,
59
(
7
), pp.
708
716
. (in Japanese)
25.
Shaw, M. C., 1984, Metal Cutting Principle, Oxford University Press, Oxford, UK, pp. 10–11.
You do not currently have access to this content.