A new approach for boundary conformed toolpath generation is presented in this paper. The approach combines the numerical Laplace solution for initial parametrization and a parametric redistribution algorithm for improved toolpath generation. The Laplace parametrization can be applied to any 2D surface domain without anomalies. Our parametric redistribution algorithm can then be used to reduce the unevenness that usually occurs in Laplace parametrization. The adequacy of computational robustness and efficiency of the parametric redistribution method are tested in this paper. By applying the parametric redistribution method, both the machining efficiency and uniformity of the resultant toolpaths can be improved. The advantages of this boundary conformed toolpath generation approach are successfully demonstrated on several typical examples.

1.
Mortenson, Michael E., 1985, Geometric Modeling, John Wiley & Sons, Inc.
2.
Broomhead
,
P.
, and
Edkins
,
M.
,
1986
, “
Generating NC Data at the Machine Tool for the Manufacture of Free-Form Surfaces
,”
Sov. Powder Metall. Met. Ceram
,
24
(
1
), pp.
1
14
.
3.
Loney
,
G. C.
, and
Ozsoy
,
T. M.
,
1987
, “
NC Machining of Free-Form Surfaces
,”
Comput.-Aided Des.
,
19
(
2
), pp.
85
90
.
4.
Elber
,
G.
, and
Cohen
,
E.
,
1994
, “
Toolpath Generation for Freeform Surface Models
,”
Comput.-Aided Des.
,
26
(
6
),
June
June
.
5.
Huang, Y., and Olive, J. H., 1992, “Non-Constant Parameter NC Tool Path Generation of Sculptured Surfaces,” ASME Computers in Engineering, Vol. 1, pp. 411–419.
6.
Bobrow
,
J. E.
,
1985
, “
NC Machine Tool Path Generation From CSG Part Representations
,”
Comput.-Aided Des.
,
17
(
2
), pp.
69
76
.
7.
Hwang
,
J. S.
,
1992
, “
Interference-Free Tool-Path Generation in the NC Machining of Parametric Compound Surfaces
,”
Comput.-Aided Des.
,
24
(12), Dec., pp.
667
676
.
8.
Persson
,
H.
,
1978
, “
NC Machining of Arbitrarily Shaped Pockets
,”
Comput.-Aided Des.
,
10
(
3
), pp.
169
174
.
9.
Suh
,
S.
, and
Lee
,
K.
,
1992
, “
Avoiding Tool Interference in Four-Axis NC Machining of Rotationally Free Surfaces
,”
IEEE Trans. Rob. Autom.
,
8
(
6
), pp.
718
729
.
10.
Held
,
M.
,
Lukacs
,
G.
, and
Andor
,
L.
,
1994
, “
Pocket Machining Based on Contour-Parallel Tool Paths Generated by Means of Proximity Maps
,”
Comput.-Aided Des.
,
26
(
3
), pp.
189
203
.
11.
Suresh
,
K.
, and
Yang
,
D.
,
1994
, “
Constant Scallop-Height Machining of Free-Form Surfaces
,”
ASME J. Eng. Ind.
,
116
, pp.
253
259
.
12.
Han
,
Z.
, and
Yang
,
D. C. H.
,
1999
, “
Iso-Phote Based Toolpath Generation for Machining Free-Form Surfaces
,”
ASME J. Manuf. Sci. Eng.
,
121
, Nov., pp.
656
664
.
13.
Yang, D. C. H., Chuang, J. J., Han, Z., and Ding, S., 2000, “Boundary Conformed Toolpath Generation for Trimmed Free-Form Surfaces Via Coons Reparametrization,” IMCC’2000 International Manufacturing Conference in China, August 16–17, Hong Kong.
14.
Gordon, W. J., and Thiel, L. C., 1982, “Transfinite Mappings and Their Applications to Grid Generation,” Numerical Grid Generation, Joe F. Thompson, ed., North-Holland.
15.
Eiseman, Peter R., and Smith, Robert, 1980, “Mesh Generation Using Algebraic Techniques,” Numerical Grid Generation Techniques, Robert E. Smith, ed., NASA CP-2166.
16.
Thompson, Joe F., Warsi, Z. U. A., and Mastin, C. Wayne, 1985, Numerical Grid Generation, Foundations and Applications, Elsevier Science Publishing Co, Inc.
17.
Coleman, Roderick M., 1980, “Generation of Orthogonal Boundary-Fitted Coordinate System,” Proceedings of Workshop on Numerical Grid Generation, NASA CP-2166, pp. 213–219.
18.
Lehtima¨ki
,
Reijo
,
1990
, “
Elliptic Grid Generation
,”
AIAA J.
,
37
(
6
), pp.
768
770
.
19.
Hoffmann, Klaus A., 1989, “Computational Fluid Dynamics for Engineers,” Engineering Education System.
20.
Yang
,
D. C. H.
,
Chuang
,
J. J.
, and
OuLee
,
T. H.
,
2003
, “
Boundary Conformed Toolpath Generation for Trimmed Freeform Surfaces
,”
Comput.-Aided Des.
35
, pp.
127
139
.
You do not currently have access to this content.