Tailor Welded Blanks (TWBs) offer several notable benefits including decreased part weight, reduced manufacturing costs, increased environmental friendliness, and improved dimensional consistency. In order to take advantage of these benefits, however, designers need to overcome the reduced formability of TWBs and be able to accurately predict unique characteristics related to TWB forming early in the design process. In this paper, an analytical model to predict the weld line movement and forming height for a uniform binder force, TWB forming application is presented. Comparison to numerical simulation results demonstrates the accuracy of this methodology. The analytical model provides designers a valuable tool to determine the location of steps on the die surface to accommodate the weld line movement and the potential forming height for a TWB forming with a uniform binder force. The methodology presented here has the potential to be extended to analyze a non-uniform binder force forming of TWBs.

1.
Auto/Steel Partnership, 1995, “Tailor Welded Blank Design and Manufacturing Manual,” Technical Report.
2.
Eisenmenger, M., Bhatt, K. K., and Shi, M. F., 1995, “Influence of Laser Welding Parameters on Formability and Robustness of Blank Manufacturing: An Application to a Body Side Frame,” SAE Technical Paper Series, Paper No. 950922, pp. 171–182.
3.
Bhatt, K. K., Eisenmenger, M., and Shi, M. F., 1995, “Formability of Mash Seam Welded Blanks: Effects of Welding Set-Up Conditions,” SAE Technical Paper Series, Paper No. 950923, pp. 183–189.
4.
Doege, E., Dohrmann, H., and Kosters, R., 1996, “Simulation and Optimization of the Forming Process of Tailored Blanks,” Proceedings of Numisheet ’96, pp. 199–204.
5.
Lee, A. P., Feltham, E., and Van Deventer, J., 1996, “Tailor Welded Blank Technology for Automotive Applications,” Sheet Metal Stamping for Automotive Applications, SAE Technical Paper Series, Paper No. 960817, pp. 91–102.
6.
Kridli, G. T., Friedman, P. A., and Sherman, A. M., 2000, “Formability of Aluminum Tailor-Welded Blanks,” SAE Paper No. 2000-01-0772.
7.
Venkat
,
B. S.
,
Albright
,
C. E.
,
Ramasamy
,
S.
, and
Hurley
,
J. P.
,
1997
, “
CO2 Laser Beam Welding of Aluminum 5754-O and 6111-T4 Alloys
,”
Weld. J. (Miami)
,
76
(
7
), July, pp.
275
82
.
8.
Stasik, M. C., and Wagoner, R. H., 1996, “Forming of Tailor Welded Aluminum Blanks,” Aluminum and Magnesium for Automotive Applications, The Minerals, Metals & Materials Society, pp. 69–83.
9.
Davies
,
R. W.
,
Smith
,
M. T.
,
Oliver
,
H. E.
,
Khaleel
,
H.
,
Pitman
,
S. G.
,
2000
, “
Weld Metal Ductility in Aluminum Tailor Welded Blanks
,”
Metall. Mater. Trans. A
,
31
(
11
), pp.
2755
2763
.
10.
Davies
,
R. W.
,
Grant
,
G. J.
,
Oliver
,
H. E.
,
Khaleel
,
H.
,
Smith
,
M. T.
,
2001
, “
Forming-limit Diagrams of Aluminum Tailor-Welded Blank Weld Material
,”
Metall. Mater. Trans. A
,
32
(
2
), pp.
275
283
.
11.
Viswanathan, V., Kinsey, B., and Cao, J., 2001, “Forming of Aluminum Tailor Welded Blanks,” SAE Paper No. 2000-01-0822.
12.
Ahmetoglu
,
M. A.
,
Brouwers
,
D.
,
Shulkin
,
L.
,
Taupin
,
L.
,
Kinzel
,
G. L.
, and
Altan
,
T.
,
1995
, “
Deep Drawing of Round Cups from Tailor-welded Blanks
,”
SAE Trans.
53
, pp.
684
694
.
13.
Siegert
,
K.
, and
Knabe
,
E.
,
1995
, “
Fundamental Research and Draw Die Concepts for Deep Drawing of Tailored Blanks
,”
SAE Trans.
,
104
, pp.
866
876
.
14.
Cao, J., and Kinsey, B., 1999, “Adaptive Method and Apparatus for Forming Tailor Welded Blanks,” U.S. Patent No. 5,941,110.
15.
Kinsey
,
B.
, and
Cao
,
J.
, 2001, “Enhancement of Sheet Metal Formability Via Local Adaptive Controllers,” Transactions of NAMRI of SME, Vol. XXIX, pp. 81–88.
16.
Kinsey, B., and Cao, J., 2001, “Numerical Simulations and Experimental Implementation of Tailor Welded Blank Forming,” Second Global Symposium on Innovations in Materials Processing & Manufacturing: Sheet Materials, 2001 TMS Annual Meeting.
17.
Shi
,
M. F.
,
Pickett
,
K. M.
, and
Bhatt
,
K. K.
,
1993
, “
Formability Issues in the Application of Tailor Welded Blank Sheets
,”
SAE Trans.
, Paper No. 930278,
102
(
5
), pp.
27
35
.
18.
Cayssials, F., 2000, “An Industrial Application of Specific Forming Limit Curves for Tailor Welded Blanks,” Proceedings of the 2000 International Deep Drawing Research Group, Ann Arbor, MI, June, pp. 17–22.
19.
He, S., Wu, X., and Hu, S. J., 2001, “Formability Enhancement for Tailor-Welded Blanks Using Blank Holding Force Control,” 2001 ASME International Congress of Mechanical Engineering Congress & Exposition.
20.
Saran
,
M. J.
,
Keum
,
Y. T.
, and
Wagoner
,
R. H.
,
1991
, “
Section Analysis with Irregular Tools and Arbitrary Draw-in Conditions for Numerical Simulation of Sheet Forming
,”
Int. J. Mech. Sci.
,
33
(
11
), pp.
893
909
.
21.
Brooks
,
A.
,
Jhita
,
R.
, and
Ni
,
C. M.
,
1991
, “
Applications of a Two-Dimensional Metal Forming Analysis Tool to Production Stamping Problems
,”
SAE Trans.
, Paper No. 910775,
100
(
5
), pp.
751
758
.
22.
Hong
,
Y.
,
Brad
,
Kinsey
, and
Jian
,
Cao
,
2000
, “
Rapid Design of Corner Restraining Force in Deep Drawn Rectangular Parts
,”
Int. J. Mach. Tools Manuf.
,
40
(
1
), pp.
113
131
.
23.
Wenner
,
M. L.
, 1983, “On Work Hardening and Springback in Plane Strain Draw Forming,” Journal of Applied Metal Working, 2(4), p. 277.
24.
Pourboghrat, F., and Chandorkar, K., 1992, “Springback Calculation for Plane Strain Sheet Forming Using Finite Element Membrane Solution,” Numerical Methods for Simulation of Industrial Metal Forming Processes, CED-Vol. 5, AMD- Vol. 156, p. 85.
25.
Wang
,
N. M.
, and
Tang
,
S. C.
,
1988
, “
Analysis of Bending Effects in Sheet Forming Operations
,”
Int. J. Numer. Methods Eng.
,
25
, p.
253
253
.
26.
Wang, N. M., and Wenner, M. L., 1978, “Elastic-viscoplastic Analysis of Simple Stretch Forming Problems,” Mechanics of Sheet Metal Forming, Koistinen, D. P., and Wang, N. M., eds., Plenum Press, New York, p. 367.
27.
Wood, R. D., Mattiasson, K., Honnor, M. E., and Zienkiewicz, O. C., 1985, “Viscous Flow and Solid Mechanics Approaches to the Analysis of Thin Sheet Forming,” Computer Modeling of Sheet Metal Forming Processes, Wang, N. M., and Tang, S. C., eds., AIME.
28.
Zhang
,
Z. T.
, and
Hu
,
S. J.
,
1997
, “
Mathematical Modeling in Plane Strain Bending
,”
SAE Trans.
, Paper No. 970439,
106
(
5
), pp.
63
76
.
29.
Swift
,
H. W.
,
1948
, “
Plastic Bending under Tension
,”
Engineering
,
166
, pp.
333
359
.
30.
Hutchinson, J. W., and Neale, K. W., 1985, “Wrinkling of Curved Thin Sheet Metal,” Plastic Instability, Presses Ponts et Chausse´es, Paris, pp. 71–78.
31.
Yu
,
T. X.
, and
Johnson
,
W.
,
1982
, “
The Buckling of Annular Plates in Relation to the Deep-Drawing Process
,”
Int. J. Mech. Sci.
,
24
, pp.
175
188
.
32.
Hill, R., 1950, The Mathematical Theory of Plasticity, Oxford University Press, London.
You do not currently have access to this content.