This paper proposes a new thermal error modeling methodology called the Dynamic Thermal Error Modeling which improves the accuracy and robustness of the machine tool thermal error model. The characteristics of the thermoelastic system are investigated from the dynamic system viewpoint. The pseudo-hysteresis effect is revealed to be the major factor causing poor robustness of the conventional static thermal error model. System identification theory is applied to build the dynamic thermal error model for machine tool thermal error on-line prediction. The modeling procedure for the linear Output Error (OE) model is illustrated using simulation work for both one-dimensional spindle and two-dimensional machine structure thermal deformations. Model performance evaluation through spindle experiments shows that the thermal error dynamic model has advantages over the conventional static model in terms of model accuracy and robustness.

1.
Venugopal
,
R.
, and
Barash
,
M.
,
1986
, “
Thermal Effects on the Accuracy of Numerically Controlled Machine Tools
,”
CIRP Ann.
,
35
(
1
), pp.
255
258
.
2.
Donmez
,
M. A.
,
Liu
,
C. R.
, and
Barash
,
M. M.
,
1986
, “
General Methodology for Machine Tool Accuracy Enhancement by Error Compensation
,”
Precis. Eng.
,
8
(
4
), pp.
187
196
.
3.
Yang
,
S.
,
Yuan
,
J.
, and
Ni
,
J.
,
1996
, “
The Improvement of Thermal Error Modeling and Compensation on Machine Tools by Neural Network
,”
Int. J. Mach. Tools Manuf.
,
36
(
4
), pp.
527
537
.
4.
Kurtoglu
,
A.
,
1990
, “
The Accuracy Improvement of Machine Tools
,”
CIRP Ann.
,
39
(
1
), pp.
417
419
.
5.
Donmez, M. A., 1991, “Progress Report of the Quality in Automation Project for FY90,” Technical Report NISTIR-4536, National Institute of Standards and Technology, Gaithersburg, MD.
6.
Chen, J. S., Yuan, J., Ni, J., and Wu, S. M., 1992, “Thermal Error Modeling for Volumetric Error Compensation,” Proceedings, 1992 ASME Winter Annual Meeting, PED-Vol. 55, pp. 113–125.
7.
Lo, C., 1994, “Optimal Modeling of Thermal Error Components for Machine Tool Error Compensation,” S. M. Wu Symposium pp. 61–67.
8.
McClure
,
E. R.
, and
Thal-Larson
,
H.
,
1971
, “
Thermal Effects In Precision Machining
,”
J. Mech. Eng.
,
93
(
7
), pp.
11
14
.
9.
Moriwaki
,
T.
, and
Shamoto
,
E.
,
1998
, “
Analysis of Thermal Deformation of an Ultraprecision Air Spindle System
,”
CIRP Ann.
,
47
(
1
), pp.
315
319
.
10.
Li
,
S.
,
Zhang
,
Y.
, and
Zhang
,
G.
,
1997
, “
A Study of Pre-compensation for Thermal Errors of NC Machine Tools
,”
Int. J. Mach. Tools Manuf.
,
37
(
12
), pp.
1715
1719
.
11.
Stein
,
J. L.
, and
Tu
,
J. F.
,
1994
, “
A State-Space Model for Monitoring Thermally Induced Preload in Anti-Friction Spindle Bearings of High-Speed Machine Tools
,”
ASME J. Dyn. Syst., Meas., Control
,
116
(
3
), pp.
372
386
.
12.
Wang
,
Y.
,
Zhang
,
G.
et al.
,
1998
, “
Compensation for the Thermal Error of a Multi-axis Machining Center
,”
J. Mater. Process. Technol.
,
75
(
1
), pp.
45
53
.
13.
Soons, J. A., 1993, “Accuracy Analysis of Multi-Axis Machines,” Ph.D. thesis, Eindhoven University.
14.
Fraser
,
S.
,
Attia
,
M. H.
, and
Osman
,
M. O. M.
,
1998
, “
Modeling, Identification and Control of Thermal Deformation of Machine Tool Structures, Part I: Concept of Generalized Modeling
,”
ASME J. Manuf. Sci. Eng.
,
120
(
3
), pp.
623
631
.
15.
Ljung, L., 1999, System Identification: Theory for the User, Prentice Hall PTR.
16.
Bayoumi
,
M. M.
,
Wong
,
K. Y.
, and
El-Bagoury
,
M. A.
,
1981
, “
A Self-Turning Regulator for Multivariable Systems
,”
Automatica
,
17
(
4
), pp.
575
592
.
17.
Attia
,
M. H.
, and
Kops
,
L.
,
1979
, “
Nonlinear Thermoelastic Behavior of Structure Joint—Solution to a Missing Link for Prediction of Thermal Deformation of Machine Tools
,”
ASME J. Eng. Ind.
,
101
, pp.
348
354
.
You do not currently have access to this content.