Current fixture design methods rely extensively on heuristics and lack a formal engineering approach to determine the necessary stiffness, dimensions, etc. This paper presents a model for stiffness optimization of machining fixtures based on the tolerance limit specified for the machined part surface. Specifically, the model allows systematic determination of the optimum fixture stiffness needed to keep the contribution of fixture deflection to the machined feature tolerance within a designer-specified level. Based on the stiffness optimization model presented here, the optimum dimensions of the fixture elements can also be determined. The model development relies on rigid body analysis methods, contact mechanics principles, and consideration of bulk elasticity of the fixture. The model is generic enough to be used for the design of dedicated or flexible fixtures consisting of mechanical elements. Two examples, one involving a pin-array type flexible fixture and another involving a dedicated fixture, are presented to illustrate the applicability of the model.

1.
Shawki
,
G. S. A.
, and
Abdel-Aal
,
M. M.
,
1965
, “
Effect of Fixture Rigidity and Wear on Dimensional Accuracy
,”
Int. J. Mach. Tool Des. Res.
,
5
, pp.
183
202
.
2.
Shawki
,
G. S. A.
, and
Abdel-Aal
,
M. M.
,
1966
, “
Rigidity Considerations in Fixture Design-Rigidity of Clamping Elements
,”
Int. J. Mach. Tool Des. Res.
,
6
, pp.
207
220
.
3.
Shawki
,
G. S. A.
, and
Abdel-Aal
,
M. M.
,
1966
, “
Rigidity Considerations in Fixture Design-Contact Rigidity at Locating Elements
,”
Int. J. Mach. Tool Des. Res.
,
6
, pp.
31
43
.
4.
Shawki
,
G. S. A.
, and
Abdel-Aal
,
M. M.
,
1967
, “
Rigidity Considerations in Fixture Design-Contact Rigidity for Eccentric Clamping
,”
Int. J. Mach. Tool Des. Res.
,
7
, pp.
195
209
.
5.
Asada
,
H.
, and
By
,
A.
,
1985
, “
Kinematic Analysis of Workpart Fixturing For Flexible Assembly with Automatically Reconfigurable Fixtures
,”
IEEE Trans. Rob. Autom.
,
RA-1
, No.
2
, June, pp.
86
94
.
6.
Chou
,
Y. C.
,
Chandru
,
V.
, and
Barash
,
M. M.
,
1989
, “
A Mathematical Approach to Automatic Configuration of Machining Fixtures: Analysis and Synthesis
,”
ASME J. Eng., Ind.
,
111
, No.
4
, pp.
299
306
.
7.
Lee
,
J. D.
, and
Haynes
,
L. S.
,
1987
, “
Finite-Element Analysis of Flexible Fixturing System
,”
ASME J. Eng., Ind.
,
109
, pp.
134
139
.
8.
Melkote, S. N., Athavale, S. M., DeVor, R. E., Kapoor, S. G., and Burkey, J. J., 1995, “Prediction of the Reaction Force System for Machining Fixtures Based on the Machining Process Simulation,” Transactions of the North American Manufacturing Research Institution of SME, Vol. 23, pp. 207–214.
9.
Chandra, P., Athavale, S. M., De Vor, R. E., and Kapoor, S. G., 1996, “Effect of Preloads on the Surface Flatness During Fixturing of Flexible Workpieces,” Proceedings of the Second Wu Symposium on Manufacturing Science, Vol. 2, pp. 146–152.
10.
Cai
,
W.
,
Hu
,
S. J.
, and
Yuan
,
J. X.
,
1996
, “
Deformable Sheet Metal Fixturing: Principles, Algorithms and Simulations
,”
ASME J. Manuf. Sci. Eng.
,
118
, No.
3
, pp.
318
324
.
11.
Sayeed
,
Q. A.
, and
DeMeter
,
E. C.
,
1999
, “
Mixed-Integer Programming Model for Fixture Layout Optimization
,”
ASME J. Manuf. Sci. Eng.
,
121
, No.
4
, pp.
701
708
.
12.
Sinha
,
P. R.
, and
Abel
,
J.
,
1992
, “
A Contact Stress Model for Multifingered Grasps of Rough Objects
,”
IEEE Trans. Rob. Autom.
,
8
, No.
1
, pp.
7
22
.
13.
Hockenberger
,
M. J.
, and
De Meter
,
E. C.
,
1996
, “
The Application of Meta Functions to the Quasi-Static Analysis of Workpiece Displacement within a Machining Fixture
,”
ASME J. Manuf. Sci. Eng.
,
118
, pp.
325
331
.
14.
Hurtado, J. F., and Melkote, S. N., 1998, “A Model for the Prediction of Reaction Forces in a 3-2-1 Machining Fixture,” NAMRC Transactions, Vol. 26, pp. 335–340.
15.
Li
,
B.
, and
Melkote
,
S. N.
,
1999
, “
An Elastic Contact Model for the Prediction of Workpiece-Fixture Contact Forces in Clamping
,”
ASME J. Manuf. Sci. Eng.
,
121
, No.
3
, pp.
485
493
.
16.
Li
,
B.
, and
Melkote
,
S. N.
,
1999
, “
Improved Workpiece Location Accuracy Through Fixture Layout Optimization
,”
Int. J. Mach. Tools Manuf.
,
39
, pp.
871
883
.
17.
Li, B., and Melkote, S. N, 2000, “A Minimum Clamping Force Algorithm for Machining Fixtures,” Transactions of NAMRI/SME, Vol. XXVIII, pp. 407–412.
18.
Hurtado, J. F., and Melkote, S. N., 2000, “Tolerance-Based Stiffness Optimization of Machining Fixtures,” Proceedings of the Japan-USA Symposium on Flexible Automation (on CD-ROM), July 23–26, 2000, Ann Arbor, MI, p. 1–8.
19.
Barozzi, G., 1988, U.S. Patent #4,936,560.
20.
Puttmer, H., and Abraham, P., 1996, U.S. Patent #5,690,323.
21.
Soderberg, M., Starr, R., Cook, L., and Thomas, R., 1998, U.S. Patent #5,722,646.
22.
Kalker
,
J. J.
,
1977
, “
Variational Principles of Contact Elastostatics
,”
J. Inst. Math. Appl.
,
20
, pp.
199
219
.
23.
Johnson, K. L., 1985, Contact Mechanics, Cambridge University Press.
24.
Bras, B., and Mistree, F., 1993, “Compromise Decision Support Problem for Axiomatic and Robust Design,” Advances in Design Automation, ASME DE-Vol. 65, pt 1, pp. 359–369.
25.
Hills, D. A., Nowell, D., and Sackfield, A., 1993, Mechanics of Elastic Contacts, Boston, Butterworth-Heinemann.
You do not currently have access to this content.