This paper describes a methodology of online measuring and compensating spindle error motions without using a precalibrated master. The method is based on a combination of forecasting compensatory control (FCC) and error separation techniques. The real time recursive ARMA modeling technique is used for the modeling and forecasting of workpiece errors while the error compensation is performed by means of two-dimensional piezo-actuated tool movements. Experimental results have shown that an improvement of 42–47 percent was achieved for the roundness error of workpieces in the taper turning operations.
Issue Section:
Technical Papers
1.
Wu
, S. M.
, 1977
, “Dynamic Data Systems: A New Modeling Approach
,” ASME J. Eng. Ind.
, 99
, pp. 708
–714
.2.
Moon, E. J., Eman, K. F., and Wu, S. M. 1984, “Implementation of Forecasting Compensatory Control for Machining Straightness,” ASME Winter Annual Meeting, pp. 47–53.
3.
Rao
, S. B.
, and Wu
, S. M.
, 1982
, “Compensatory Control of Roundness Error in Cylindrical Chuck Grinding
,” ASME J. Eng. Ind.
, 104
, pp. 385
–391
.4.
Rao
, S. B.
, and Wu
, S. M.
, 1982
, “A Quantitative Analysis of Roundness Error in Cylindrical Chunk Grinding
” Int. J. Mach. Tool Des. Res.
, 21
, pp. 41
–48
.5.
Kim, K. H., Eman, K. F., and Wu, S. M., 1985, “Forecasting Compensatory Control of Spindle Error Motion in Cylindrical Grinding,” ASME Statistics in Manufacturing, PED-Vol. 9, pp. 75–81.
6.
Kim
, K. H.
, Eman
, K. F.
, and Wu
, S. M.
, 1987
, “Development of a Forecasting Compensatory Control System for Cylindrical Grinding
,” ASME J. Eng. Ind.
, 109
, pp. 385
–391
.7.
Huang, K., and Wu, S. M., 1984, “Forecasting Compensatory Control (FCC) of Roundness in Boring,” International Computers in Engineering Conference and Exhibit, Las Vegas, Nevada, pp. 378–383.
8.
Kim
, K. H.
, Eman
, K. F.
, and Wu
, S. M.
, 1987
, “In-Process Control of Cylindricity in Boring Operations
,” ASME J. Eng. Ind.
, 109
, pp. 291
–296
.9.
Your, S. B., 1987, “Precision Control on the Flatness of Winchester Disc in Face-Turning Operations,” Ph.D. Dissertation, University of Wisconsin-Madison.
10.
Fung
, E. H. K.
, Cheung
, S. M.
, and Leung
, T. P.
, 1998
, “Implementation of an Error Forecasting and Compensation System for Roundness Improvement in Taper Turning
,” Computers in Industry
, 35
, pp. 109
–20
.11.
Xu
, W. L.
, and Han
, L.
, 1999
, “Piezoelectric Actuator Based Active Error Compensation of Precision Machining
,” Meas. Sci. Technol.
, 10
, pp. 106
–111
.12.
Wu, S. M., and Ni, J., 1988, “New Approaches to Achieve Better Machine Performance,” Proceedings of the USA-Japan Symposium on Flexible Automation, Vol. 2, pp. 1063–1068.
13.
Wu
, S. M.
, and Ni
, J.
, 1989
, “Precision Machine without Precise Machinery
,” CIRP Ann.
, 38
, pp. 533
–536
.14.
Uda
, Y.
, Kohno
, T.
, and Yazawa
, T.
, 1996
, “In-process Measurement and Workpiece-referred Form Accuracy Control System (WORFAC): Application to Cylindrical Turning Using an Ordinary Lathe
,” Journal of the American Society for Precision Engineering
, 18
, pp. 50
–55
.15.
Li
, C. J.
, and Li
, S. Y.
, 1992
, “On-line Roundness Error Compensation via P-Integrator Learning Control
,” ASME J. Eng. Ind.
, 114
, pp. 476
–480
.16.
Li
, S. Y.
, and Li
, C. J.
, 1994
, “Cylindricity Error Compensation in Diamond Turning via P-Integrator Repetitive Control
,” Tran. NAMRI/SME
, 22
, pp. 79
–84
.17.
Hanson
, R. D.
, and Tsao
, T.-C.
, 1998
, “Reducing Cutting Force Induced Bore Cylindricity Errors by Learning Control and Variable Depth of Cut Machining
,” ASME J. Manuf. Sci. Eng.
, 120
, pp. 547
–554
.18.
Whitehouse
, D. J.
, 1976
, “Some Theoretical Aspects of Error Separation Techniques in Surface Metrology
,” J. Phys. E
, 9
, pp. 531
–536
.19.
Zhang
, G. X.
, Zhang
, Y. H.
, Yang
, S. M.
, and Li
, Z.
, 1997
, “A Multipoint Method for Spindle Error Motion Measurement
,” CIRP Ann.
, 46
, pp. 441
–445
.20.
Tong
, S.
, 1996
, “Two-step Method Without Harmonics Suppression in Error Separation
,” Meas. Sci. Technol.
, 7
, pp. 1563
–1568
.21.
Zhang
, G. X.
, and Wang
, R. K.
, 1993
, “Four-Point Method of Roundness and Spindle Error Measurements
,” CIRP Ann.
, 42
, pp. 593
–596
.22.
Kato
, H.
, Nikura
, M.
, and Nakano
, Y.
, 1991
, “Minute Control of Rotational Error Motion of Workpiece by Using Piezo-Actuator in Precision Cylindrical Grinding
,” Int. J. Jpn. Soc. Precis. Eng.
, 25
, pp. 303
–308
.23.
Schrama
, P. R. J.
, and Franse
, J.
, 1988
, “The Precision Cutting Process as a Non-linear Closed Loop System
,” Precis. Eng.
, 10
, pp. 199
–207
.24.
Fassois
, S. D.
, Eman
, K. F.
, and Wu
, S. M.
, 1989
, “A Fast Algorithm for On-line Machining Process Modeling and Adaptive Control
,” ASME J. Eng. Ind.
, 111
, pp. 133
–139
.25.
Teja
, S. R.
, and Jayasingh
, T.
, 1993
, “Characterization of Ground Surface Profiles—A Comparison of AR, MA, ARMA Modeling Approach
,” Int. J. Mach. Tools Manuf.
, 33
, No. 1
, pp. 103
–109
.26.
Fung
, E. H. K.
, and Chung
, A. P. L.
, 1999
, “Using ARMA Models to Forecast Workpiece Roundness Error in a Turning Operation
,” Appl. Math. Model.
, 23
, pp. 567
–585
.27.
Bennis
, S.
, and Assaf
, G. J.
, 1994
, “Adaptive Forecast of Multi-month Lake Level Elevation
,” Can. J. Civ. Eng.
, 21
, pp. 778
–788
.Copyright © 2001
by ASME
You do not currently have access to this content.