This paper describes a methodology of online measuring and compensating spindle error motions without using a precalibrated master. The method is based on a combination of forecasting compensatory control (FCC) and error separation techniques. The real time recursive ARMA modeling technique is used for the modeling and forecasting of workpiece errors while the error compensation is performed by means of two-dimensional piezo-actuated tool movements. Experimental results have shown that an improvement of 42–47 percent was achieved for the roundness error of workpieces in the taper turning operations.

1.
Wu
,
S. M.
,
1977
, “
Dynamic Data Systems: A New Modeling Approach
,”
ASME J. Eng. Ind.
,
99
, pp.
708
714
.
2.
Moon, E. J., Eman, K. F., and Wu, S. M. 1984, “Implementation of Forecasting Compensatory Control for Machining Straightness,” ASME Winter Annual Meeting, pp. 47–53.
3.
Rao
,
S. B.
, and
Wu
,
S. M.
,
1982
, “
Compensatory Control of Roundness Error in Cylindrical Chuck Grinding
,”
ASME J. Eng. Ind.
,
104
, pp.
385
391
.
4.
Rao
,
S. B.
, and
Wu
,
S. M.
,
1982
, “
A Quantitative Analysis of Roundness Error in Cylindrical Chunk Grinding
Int. J. Mach. Tool Des. Res.
,
21
, pp.
41
48
.
5.
Kim, K. H., Eman, K. F., and Wu, S. M., 1985, “Forecasting Compensatory Control of Spindle Error Motion in Cylindrical Grinding,” ASME Statistics in Manufacturing, PED-Vol. 9, pp. 75–81.
6.
Kim
,
K. H.
,
Eman
,
K. F.
, and
Wu
,
S. M.
,
1987
, “
Development of a Forecasting Compensatory Control System for Cylindrical Grinding
,”
ASME J. Eng. Ind.
,
109
, pp.
385
391
.
7.
Huang, K., and Wu, S. M., 1984, “Forecasting Compensatory Control (FCC) of Roundness in Boring,” International Computers in Engineering Conference and Exhibit, Las Vegas, Nevada, pp. 378–383.
8.
Kim
,
K. H.
,
Eman
,
K. F.
, and
Wu
,
S. M.
,
1987
, “
In-Process Control of Cylindricity in Boring Operations
,”
ASME J. Eng. Ind.
,
109
, pp.
291
296
.
9.
Your, S. B., 1987, “Precision Control on the Flatness of Winchester Disc in Face-Turning Operations,” Ph.D. Dissertation, University of Wisconsin-Madison.
10.
Fung
,
E. H. K.
,
Cheung
,
S. M.
, and
Leung
,
T. P.
,
1998
, “
Implementation of an Error Forecasting and Compensation System for Roundness Improvement in Taper Turning
,”
Computers in Industry
,
35
, pp.
109
20
.
11.
Xu
,
W. L.
, and
Han
,
L.
,
1999
, “
Piezoelectric Actuator Based Active Error Compensation of Precision Machining
,”
Meas. Sci. Technol.
,
10
, pp.
106
111
.
12.
Wu, S. M., and Ni, J., 1988, “New Approaches to Achieve Better Machine Performance,” Proceedings of the USA-Japan Symposium on Flexible Automation, Vol. 2, pp. 1063–1068.
13.
Wu
,
S. M.
, and
Ni
,
J.
,
1989
, “
Precision Machine without Precise Machinery
,”
CIRP Ann.
,
38
, pp.
533
536
.
14.
Uda
,
Y.
,
Kohno
,
T.
, and
Yazawa
,
T.
,
1996
, “
In-process Measurement and Workpiece-referred Form Accuracy Control System (WORFAC): Application to Cylindrical Turning Using an Ordinary Lathe
,”
Journal of the American Society for Precision Engineering
,
18
, pp.
50
55
.
15.
Li
,
C. J.
, and
Li
,
S. Y.
,
1992
, “
On-line Roundness Error Compensation via P-Integrator Learning Control
,”
ASME J. Eng. Ind.
,
114
, pp.
476
480
.
16.
Li
,
S. Y.
, and
Li
,
C. J.
,
1994
, “
Cylindricity Error Compensation in Diamond Turning via P-Integrator Repetitive Control
,”
Tran. NAMRI/SME
,
22
, pp.
79
84
.
17.
Hanson
,
R. D.
, and
Tsao
,
T.-C.
,
1998
, “
Reducing Cutting Force Induced Bore Cylindricity Errors by Learning Control and Variable Depth of Cut Machining
,”
ASME J. Manuf. Sci. Eng.
,
120
, pp.
547
554
.
18.
Whitehouse
,
D. J.
,
1976
, “
Some Theoretical Aspects of Error Separation Techniques in Surface Metrology
,”
J. Phys. E
,
9
, pp.
531
536
.
19.
Zhang
,
G. X.
,
Zhang
,
Y. H.
,
Yang
,
S. M.
, and
Li
,
Z.
,
1997
, “
A Multipoint Method for Spindle Error Motion Measurement
,”
CIRP Ann.
,
46
, pp.
441
445
.
20.
Tong
,
S.
,
1996
, “
Two-step Method Without Harmonics Suppression in Error Separation
,”
Meas. Sci. Technol.
,
7
, pp.
1563
1568
.
21.
Zhang
,
G. X.
, and
Wang
,
R. K.
,
1993
, “
Four-Point Method of Roundness and Spindle Error Measurements
,”
CIRP Ann.
,
42
, pp.
593
596
.
22.
Kato
,
H.
,
Nikura
,
M.
, and
Nakano
,
Y.
,
1991
, “
Minute Control of Rotational Error Motion of Workpiece by Using Piezo-Actuator in Precision Cylindrical Grinding
,”
Int. J. Jpn. Soc. Precis. Eng.
,
25
, pp.
303
308
.
23.
Schrama
,
P. R. J.
, and
Franse
,
J.
,
1988
, “
The Precision Cutting Process as a Non-linear Closed Loop System
,”
Precis. Eng.
,
10
, pp.
199
207
.
24.
Fassois
,
S. D.
,
Eman
,
K. F.
, and
Wu
,
S. M.
,
1989
, “
A Fast Algorithm for On-line Machining Process Modeling and Adaptive Control
,”
ASME J. Eng. Ind.
,
111
, pp.
133
139
.
25.
Teja
,
S. R.
, and
Jayasingh
,
T.
,
1993
, “
Characterization of Ground Surface Profiles—A Comparison of AR, MA, ARMA Modeling Approach
,”
Int. J. Mach. Tools Manuf.
,
33
, No.
1
, pp.
103
109
.
26.
Fung
,
E. H. K.
, and
Chung
,
A. P. L.
,
1999
, “
Using ARMA Models to Forecast Workpiece Roundness Error in a Turning Operation
,”
Appl. Math. Model.
,
23
, pp.
567
585
.
27.
Bennis
,
S.
, and
Assaf
,
G. J.
,
1994
, “
Adaptive Forecast of Multi-month Lake Level Elevation
,”
Can. J. Civ. Eng.
,
21
, pp.
778
788
.
You do not currently have access to this content.