A simple stress based defect evolution model is developed to assess the influence of various process parameters on material removal rate (MRR) and induced damage during grinding of brittle materials. Model predictions for normal and lateral damage zones under normal indentations are first compared to fracture models as well as experimental observations on pyrex glass. Process design options for reducing induced damage in the finished part, and increasing MRR are considered next. In particular, the potential of a new design avenue involving intermittent unloading is investigated. Simulation results show that intermittent unloading can potentially facilitate increase in Force/Grit without increasing the associated surface and sub-surface fragmentation in the finished part. Preliminary experimental observations on single grit scratching of pyrex glass also show a similar trend. [S1087-1357(00)01902-X]

1.
Eckert, C., and Weatherall, J., 1990, Advanced ceramics: 90’s global business outlook, Ceramics Industry, April issue, pp. 53–57.
2.
Jahanmir, S., Ives, L. K., Ruff, A. W., and Peterson, M. B., 1992, “Ceramic Machining: Assessment of Current Practice and research Needs in the United States,” NIST Special Publication #834.
3.
Jahanmir, S., (ed.), 1993, Machining of Advanced Materials, NIST Special Publication 847.
4.
Bifano
,
T. G.
,
Dow
,
T. A.
, and
Scattergood
,
R. O.
,
1991
, “
Ductile Regime Grinding: A New Technology for Machining Brittle Materials
,”
ASME J. Eng. Ind.
,
113
, pp.
184
189
.
5.
Subramanian
,
K.
,
Redington
,
P. D.
, and
Ramnath
,
S.
,
1994
, “
A System Approach for Grinding of Ceramics
,”
Bull. Am. Ceram. Soc.
,
73
, pp.
61
66
.
6.
Subramanian
,
K.
,
Ramnath
,
S.
, and
Tricard
,
M.
,
1997
, “
Mechanisms of Material Removal in the Precision Production Grinding of Ceramics
,”
ASME J. Manuf. Sci. Eng.
,
119
, pp.
509
519
.
7.
Ashley, S., 1995, High-Speed Machining Goes Mainstream, Mech. Eng., ASME, May 1995, pp. 56–61.
8.
O’Connor, L., 1995, “Machining With Super-Fast Spindles,” Mech. Eng., ASME, pp. 62–64.
9.
Kovach, J. A., Laurich, Ziegler, K. R., Malkin, S., Sunderland, J. E., Guo, C., Zhu, B., and Ganesan, M., 1996, Development of advanced grinding technology for structural ceramics, Proc. NAMRC, pp. 51–56.
10.
Malkin
,
S.
,
1984
, “
Grinding of Metals: Theory and Applications
,”
J. Appl. Metalworking
,
3
, No.
2
., p
95
95
.
11.
Malkin, S., 1989, Grinding Technology: Theory and Applications of Machining and Abrasives, Ellis Horwood Pub, Chichester, UK.
12.
Gioia
,
G.
, and
Ortiz
,
M.
,
1996
, “
The Two-dimensional Structure of Dynamic Boundary Layers and Shear Bands in Thermoviscoplastic Solids
,”
J. Mech. Phys. Solids
,
44
, No.
2
, p.
251
251
.
13.
Xu
,
H. H. K.
,
Jahanmir
,
S.
, and
Wang
,
Y.
,
1995
, “
Effect of Grain Size on Scratch Interactions and Material Removal in Alumina
,”
J. Am. Ceram. Soc.
,
78
, No.
4
, pp.
881
891
.
14.
Pfeiffer, W., and Hollstein, T., 1993, Damage Determination and Strength Prediction of Machined Ceramics by X-Ray Diffraction Techniques, Machining of Advanced Materials, NIST Pub. 847, pp. 235–245.
15.
Marsh
,
D. M.
,
1964
, “
Plastic Flow in Glass
,”
Proc. R. Soc. London, Ser. A
,
279
, pp.
420
435
.
16.
McClintock, F. A., and Argon, A. S., 1966, Mechanical Behavior of Materials, Addison-Wesley, Reading, MA, USA.
17.
Schinker, M. G., and Doll, W., 1982, “Plasticity and fracture of Inorganic glasses in high speed grinding,” Fifth Int. Conf. Physics of Non-Crystalline Solids, Montpellier, France.
18.
Spur
,
G.
,
Stark
,
C.
, and
Tio
,
T. H.
,
1985
, “
Grinding of Non-Oxide Ceramics Using Diamond Grinding Wheels
,”
Machining of Ceramic Mat. Comp. ASME
,
17
, pp.
33
44
.
19.
Subramanian, K., and Keat, P. P., 1985, “Parametric study on grindability of structural and electronic ceramics—part 1,” Machining of Ceramic Materials and Components, K. Subramanian and R. Komanduri, eds., PED-Vol. 17, ASME, New York, pp. 25.
20.
Inasaki
,
I.
,
1986
, “
High efficiency grinding of advanced ceramics
,”
Ann. CIRP
,
35
, No.
1
, p.
211
211
.
21.
Allor, R. L., Whalen, T. J., Baer, J. R., and Kumar, K. V., 1993, Machining of Silicon Nitride: Experimental Determination of Process/Property relationships, Machining of Advanced Materials, NIST Pub. 847, pp. 223–234.
22.
Xu
,
H. H. K.
, and
Jahanmir
,
S.
,
1994
, “
Simple Technique for Observing Subsurface Damage in Machining of Ceramics
,”
J. Am. Ceram. Soc.
,
77
, No.
5
, pp.
1388
90
.
23.
Xu
,
H. H. K.
, and
Jahanmir
,
S.
,
1995
, “
Microfracture and Material Removal in Scratching of Alumina
,”
J. Mater. Sci.
,
30
, pp.
2235
2247
.
24.
Xu
,
H. H. K.
, and
Jahanmir
,
S.
,
1995
, “
Scratching and Grinding of a Machinable Glass-Ceramic With Weak Interfaces and Rising T-Curve
,”
J. Am. Ceram. Soc.
,
78
, No.
2
, pp.
497
500
.
25.
Lawn
,
B. R.
, and
Evans
,
A. G.
,
1980
, “
Elastic-Plastic Indentation Damage in Ceramics: The Median/Radial Crack System
,”
J. Am. Ceram. Soc.
,
63
, No.
9/10
, pp.
574
581
.
26.
Evans, A. G., and Marshall, D. B., 1981, “Wear mechanisms in ceramics,” Fundamentals of Friction and Wear of Materials, D. A. Rigney, ed., ASME, New York, USA, p. 439.
27.
Chiang
,
S. S.
,
Marshall
,
D. B.
, and
Evans
,
A. G.
,
1982
, “
The Response of Solids to Elastic/Plastic Indentation. I. Stresses and Residual Stresses,”
J. Appl. Phys.
,
53
, pp.
298
311
.
28.
Chiang
,
S. S.
,
Marshall
,
D. B.
, and
Evans
,
A. G.
,
1982
, “
The Response of Solids to Elastic/Plastic Indentation. II. Fracture Iitiation
,”
J. Appl. Phys.
53
, pp.
312
317
.
29.
Marshall
,
D. B.
,
1984
, “
Geometrical Effects in Elastic-Plastic Indentation
,”
J. Am. Ceram. Soc.
,
67
, No.
1
, pp.
57
60
.
30.
Ritter
,
J. E.
,
Strzepa
,
P.
, and
Jakus
,
K.
,
1984
, “
Erosion and Strength Degradation in Soda-Lime Glass
,”
Phys. Chem. Glasses
,
25
, No.
6
, pp.
159
166
.
31.
Ritter
,
J. E.
,
1985
, “
Assuring Mechanical Reliability of Ceramic Components
,”
J. Ceram. Soc. Jpn.
,
93
, No.
7
, pp.
341
348
.
32.
Malkin
,
S.
, and
Ritter
,
J. E.
,
1989
, “
Grinding Mechanisms and Strength Degradation for Ceramics
,”
ASME J. Eng. Ind.
,
111
, pp.
167
174
.
33.
Hu
,
K. X.
, and
Chandra
,
A.
,
1993
, “
A Fracture Mechanics Approach to Modeling Strength Degradation in Ceramic Grinding Processes
,”
ASME J. Eng. Ind.
,
115
, pp.
73
84
.
34.
Cook
,
R. F.
, and
Pharr
,
G. M.
,
1990
, “
Direct Observation and Analysis of Indentation Cracking in Glasses and Ceramics
,”
J. Am. Ceram. Soc.
,
73
, No.
4
, pp.
787
817
.
35.
Marshall
,
D. B.
, and
Iawn
,
B. R.
,
1979
, “
Residual Effects in Sharp Contact Cracking
,”
J. Mater. Sci.
,
14
, pp.
2001
2012
.
36.
Lankford
,
J.
,
1981
, “
Mechanisms responsible for Strain Rate Dependent Compressive Strength in Ceramic Materials
,”
J. Am. Ceram. Soc.
,
64
, pp.
c33–c34
c33–c34
.
37.
Grady
,
D. E.
, and
Lipkin
,
J.
,
1980
, “
Criteria for Impulsive Rock Fracture
,”
Geophys. Res. Lett.
,
7
, pp.
255
258
.
38.
Lankford
,
J.
, and
Blanchard
,
C. R.
,
1989
, “
Response of Whisker-Reinforced Ceramic Matrix Composites to Dynamic Compressive Loading
,”
Mater. Sci. Eng. A
,
107
, pp.
261
268
.
39.
Lankford
,
J.
, and
Blanchard
,
C. R.
,
1991
, “
Fragmentation of Brittle Materials at High Rates of Loading
,”
J. Mater. Sci.
,
26
, pp.
3067
3072
.
40.
Espinosa
,
H. D.
,
Raiser
,
G.
,
Clifton
,
R. J.
, and
Ortiz
,
M.
,
1992
, “
Experimental Observations and Numerical Modeling of Inelasticity in Dynamically Loaded Ceramics
,”
J. Hard Mater.
,
3
, No.
3–4
, pp.
285
313
.
41.
Suresh
,
S.
,
Nakamura
,
T.
,
Yeshurun
,
Y.
,
Yang
,
K.-H.
, and
Duffy
,
J.
,
1990
, “
Tensile Fracture Toughness of Ceramic Materials: Effects of Dynamic Loading and Elevated Temperatures
,”
J. Am. Ceram. Soc.
,
73
, No.
8
, pp.
2457
2466
.
42.
Yang
,
K. H.
, and
Kobayashi
,
A. S.
,
1990
, “
Dynamic Fracture Responses of Alumina and Two Ceramic Composites
,”
J. Am. Ceram. Soc.
,
73
, No.
8
, pp.
2309
2315
.
43.
Grady, D. E., and Kipp, M. E., 1985, “Growth of Inhomogeneous Thermoplastic Shear,” Int. Conf. Mechanical and Physical Behavior of Materials Under Dynamic Loading, Vol. 46, No. 8, pp. 291–298.
44.
Nemat-Nasser
,
S.
,
Isaacs
,
J. B.
, and
Starrett
,
J. E.
,
1991
, “
Hopkinson Techniques for Dynamic Recovery Experiments
,”
Proc. R. Soc. London, Ser. A
,
435
, pp.
371
391
.
45.
Subhash
,
G.
, and
Nemat-Nasser
,
S.
,
1993
, “
Dynamic Stress-Induced Transformation and Texture Formation in Uniaxial Compression of Zirconia Ceramics
,”
J. Am. Ceram. Soc.
,
76[1]
,
153
65
.
46.
Ravichandran
,
G.
, and
Subhash
,
G.
,
1995
, “
A Micromechanical Model for High Strain Rate Behavior of Ceramics
,”
Int. J. Solids Struct.
,
32
, No.
17/18
, pp.
2627
2646
.
47.
Yoffe
,
E. H.
,
1982
, “
Elastic Stress Fields Caused by Indenting Brittle Materials
,”
Philos. Mag. A
,
46
, pp.
617
628
.
48.
Chaudhari
,
M. M.
, and
Phillips
,
M. A.
,
1990
, “
Quasi-static Indentation Cracking of Thermally Tempered Soda-lime Glass with Spherical and Vickers Indenters
,”
Philos. Mag. A
,
62
, No.
1
, pp.
1
27
.
49.
Subhash
,
G.
, and
Nemat-Nasser
,
S.
,
1993
,
J. Mater. Sci.
,
25
,
5949
5952
.
50.
Subhash, G., Koeppel, B. J., and Chandra, A., 1999, “Dynamic Indentation Hardness and Rate Sensitivity in Metals,” ASME J. Mater. Technol. (accepted).
51.
Moriwaki
,
T.
,
Shamoto
,
E.
, and
Inoue
,
K.
,
1992
, “
Ultraprecision Ductile Cutting of Glass by Applying Ultrasonic Vibration
,”
Ann. CIRP
,
41
, No.
1
, pp.
141
144
.
52.
Markov, A. I., 1966, Ultrasonic Machining of Intractable Materials, Illife Books, London.
53.
Hashimoto, H., and K. Imai, 1998, “Epistemology and Abduction in Shear (Ductile) Mode Grinding of Brittle Materials,” Proc. of the ASPE Spring Topical Meeting, pp. 36–39.
54.
Ishikawa
,
K.
,
Suwabe
,
H.
,
Nishide
,
T.
, and
Uneda
,
M.
,
1998
, “
A Study on Combined Vibration Drilling by Ultrasonic and Low-Frequency Vibrations for Hard and Brittle Materials
,”
Precis. Eng.
,
22
, No.
4
, pp.
196
205
.
55.
Colwell, L. V., 1956, “The Effects of High-Frequency Vibrations in Grinding,” Trans. ASME, May issue, pp. 837–846.
56.
Astashev
,
V. K.
,
1992
, “
Effect of Ultrasonic Vibration of a Single Point Tool on the Process of Cutting
,”
J. Mach. Manuf. Reliability
,
2
, No.
3
, pp.
65
70
.
57.
Prabhakar
,
D.
,
Pei
,
Z. J.
, and
Ferreira
,
P. M.
,
1993
, “
A Theoretical Model for Predicting Material Removal Rates in Rotary Ultrasonic Machining of Ceramics
,”
Trans. NAMRI/SME
,
21
, pp.
176
172
.
58.
Xu
,
H. H. K.
, and
Jahanmir
,
S.
,
1995
, “
Effect of Grain Size on Scratch Damage and Hardness of Alumina
,”
J. Mater. Sci. Lett.
,
14
, pp.
736
739
.
You do not currently have access to this content.