Improving CNC machine tool accuracy has received significant attention recently. This paper intends to provide an introduction of the real-time error compensation methods as applied to reduce both geometric and thermally induced quasistatic machine tool errors. An illustrative example is used to demonstrate the use of error compensation systems for a horizontal machining center. Although several industrial applications of these error compensation systems have achieved significant results, a few major barriers have prevented this promising technology from being applied widely in manufacturing. Several ongoing research activities aimed at overcoming the barriers are also presented.
Issue Section:
Machine Tools—Systems
1.
Anjanappa, M., Anand, D. K., Kirk, J. A., and Shyam, S., 1981, “Error Correction Methodologies and Control Strategies for Numerical Control Machines,” Control Methods for Manufacturing Process, DSC-Vol. 7, pp. 41–49.
2.
Attia
M. H.
Kops
L.
1978
, “On the Role of Fixed Joints in Thermal Deformation of Machine Tool Structures
,” Annals of CIRP
, Vol. 27
, No. 1
, pp. 305
–310
.3.
Attia
M. H.
Kops
L.
1981
, “System Approach to the Thermal Behavior and Deformation of Machine Tool Structures in Response to the Effect of Fixed Joints
,” ASME JOURNAL OF ENGINEERING FOR INDUSTRY
, Vol. 103
, pp. 67
–72
.4.
Breev, B. T., 1951, “The Influence of Heat Generation in Grinding Machines on Their Accuracy,” Machine Tool, Vol. 22, No. 4.
5.
Bosch, A. J., 1995, Coordinate Measuring Machines and Systems, Marcel Dekker.
6.
Bryan
J. B.
1968
, “International Status of Thermal Error Research
,” Annals of CIRP
, Vol. 16
, pp. 203
–215
.7.
Bryan, J. B., Donaldson, R. R., McClure, E., and Clouser, R. R., 1972, SME, MR-72-138.
8.
Bryan, J. B., 1990, “International Status of Thermal Error Research (1990),” Annals of CIRP, Vol. 39/2.
9.
Camera, A., Favarato, M., Militano, L., and D’Aprilo, F., 1976, “Analysis of the Thermal Behavior of a Machine Tool Table Using the Finite Element Method,” Annals of the CIRP, Vol. 25, No. 1.
10.
Chen
J. S.
Yuan
J.
Ni
J.
Wu
S. M.
1992
, “Compensation of Non-Rigid Body Kinematic Effect on a Machining Center
,” Transaction of NAMRI
, Vol. 20
, pp. 325
–329
.11.
Chen
J. S.
Yuan
J.
Ni
J.
Wu
S. M.
1993
, “Real-Time Compensation of Time-Variant Volumetric Error on a Machining Center
,” ASME JOURNAL OF ENGINEERING FOR INDUSTRY
, Vol. 114
, Nov, pp. 472
–479
.12.
Donmez
M. A.
Blomquist
D. S.
Hocken
R. J.
Liu
C. R.
Barash
M. M.
1986
, “A General Methodology for Machine Tool Accuracy Enhancement by Error Compensation
,” Precision Engineering
, Vol. 8
, No. 4
, pp. 187
–196
.13.
Ferreira
P. M.
Liu
C. R.
1986
, “An Analytical Quadratic Model for the Geometric Error of a Machine Tool
,” Journal of Manufacturing Systems
, Vol. 5
, No. 1
, pp. 51
–62
.14.
French, D., and Humphries, S. H., 1967, “Compensation for Backlash and Alignment Errors in a Numerically Controlled Machine Tool by a Digital Computer Program,” Proceedings, The 8th MTDR Conference, Vol. 8, No. 2, pp. 707–726.
15.
Donaldson
R.
Thompson
D. C.
1986
, “Design and Performance of a Small Precision CNC Turning Machine
,” Annals of the CIRP
, Vol. 35
, No. 1
, pp. 373
–376
.16.
Ferreira
P. M.
Liu
C. R.
1993
, “A Method for Estimating and Compensating Quasistatic Errors of Machine Tools
,” ASME JOURNAL OF ENGINEERING FOR INDUSTRY
, Vol. 115
, pp. 149
–159
.17.
Hai, N., Yuan, J., and Ni, J., 1994, “Reverse Kinematic Analysis of Machine Tool Error Using Telescoping Ball Bar,” ASME, PED-Vol. 68–1, pp. 277–286.
18.
Herreman, G., Berry, F., and Dowdy, C., 1980, “Laser Measurement Systems for Machine Tool Testing,” Technology of Machine Tools, Vol. 5: Machine Tool Accuracy, Hocken, R., ed.
19.
Hocken, R. J., 1980, “Technology of Machine Tools, Vol. 5, Machine Tool Accuracy,” Machine Tool Task Force.
20.
Hocken
R.
Simpson
J. A.
Borchardt
B.
Lazar
J.
Reeve
C.
Stein
P.
1977
, “Three Dimensional Metrology
,” Annals of the CIRP
, Vol. 26
, No. 2
, pp. 403
–408
.21.
Janeczko, J., 1988, “Machine Tool Thermal Distortion Compensation,” Proceedings, 4th Biennial International Machine Tool Technology Conference.
22.
Jedrzejewski
J.
Kaczmarek
J.
Kowal
Z.
Winiarski
Z.
1990
, “Numerical Optimization of Thermal Behavior of Machine Tools
,” Annals of the CIRP
, Vol. 39
, No. 1
, pp. 109
–112
.23.
Koliskor, A. S., et al., 1971, “Compensating for Automatic Cycle Machining Error,” Machines and Tooling, Vol. 41, No. 5.
24.
Kunzmann, H., Ni, J., and Wa¨ldele, F., 1995, “Accuracy Enhancement,” Chapter 10 in Coordinate Measuring Machines and System, Marcel Dekker.
25.
Kurtoglu
A.
1990
, “The Accuracy Improvement of Machine Tools
,” Annals of the CIRP
, Vol. 39
, No. 1
, pp. 417
–419
.26.
Leete
D. J.
1961
, “Automatic Compensation of Alignment Errors in Machine Tools
,” International Journal of Machine Tool Design and Research
, Vol. 1
, pp. 293
–324
.27.
Lin
P. D.
Ehmann
K. F.
1993
, “Direct Volumetric Error Evaluation for Multi-Axis Machines
,” Int. J. of Mach. Tools Manufact.
, Vol. 33
, No. 5
, pp. 675
–693
.28.
Lo, H., Ni, J., and Yuan, J., 1996, “Thermal Sensor Placement Strategy for Machine Error Compensation,” submitted to IMECE’.
29.
Love, W. J., and Scarr, A. J., 1973, “Determination of the Volumetric Accuracy of Multi-Axis Machines,” Proceedings, The 14th MTDR Conference, Vol. 14, pp. 307–315.
30.
McClure
E. R.
1967
, “Significance of Thermal Effect in Manufacturing and Metrology
,” Annals of CIRP
, Vol. 15
, pp. 61
–66
.31.
Moriwaki
T.
Shamoto
E.
Kawano
M.
1995
, “Estimation of Thermal Deformation of Machine Tool by Applying Neural Network
,” Transaction of JSME
, Part C, v61
n584
, p. 1691
–1696
.32.
Mou
J.
Donmez
M. A.
Cetinkunt
S.
1995
, “Adaptive Error Correction Method Using Feature-Based Analysis Techniques for Machine Performance Improvement, Part 1 and Part 2
,” ASME JOURNAL OF ENGINEERING FOR INDUSTRY
, Vol. 117
, No. 4
, pp. 584
–600
.33.
Ni
J.
Huang
P. S.
Wu
S. M.
1992
, “A Multi-Degree-of-Freedom Measuring System for CMM Geometric Errors
,” ASME JOURNAL OF ENGINEERING FOR INDUSTRY
, Vol. 114
, pp. 362
–369
.34.
Nishiwaki
N.
Takeyama
H.
Hori
S.
1974
, “A Method for Improving the Thermal Behavior of Machine Tools with Heat Pipes
,” Bulletin of Japan Society of Precision Engineering
, Vol. 15
, No. 4
, pp. 249
–250
.35.
Okushima, K., and Kakino, Y., 1975, “An Analysis of Methods used in Minimizing Thermal Deformations of Machine Tools,” Proceedings, The 16th MTDR Conference, Vol. 16, pp. 195–201.
36.
Otsuka
J.
1977
, “A Study on the Coolant Temperature Control (For Cooling Machine Tools and Machined Workpieces to Prevent Thermal Deformation)
,” Bulletin of Japan Society of Precision Engineering
, Vol. 11
, No. 3
, pp. 109
–114
.37.
Sata, T., Takeuchi, Y., and Okubo, N., 1975, “Control of the Thermal Deformation of a Machine Tool,” Proceedings, The 16th MTDR Conference, Vol. 16, pp. 203–208.
38.
Schultschik
R.
1977
, “The Components of the Volumetric Accuracy
,” Annals of CIRP
, Vol. 25
, No. 1
, pp. 223
–227
.39.
Soons
J. A.
Theuws
F. C.
Schellekens
P. H.
1992
, “Modeling the Errors of Multi-Axis Machines: A General Methodology
,” Precision Engineering
, Vol. 14
, No. 1
, pp. 5
–19
.40.
Spur, G., Hoffmann, E., Paluncic, Z., Benzinger, K., and Nymoen, H., 1988, “Thermal Behavior Optimization of Machine Tools,” Annals of CIRP, Vol. 37, No. 1.
41.
Sugishita, H., et al., 1988, “Development of Concrete Machining Center and Identification of the Dynamics and the Thermal Structural Behavior,” Annals of CIRP, Vol. 37, No. 1.
42.
Sutton, G. P., 1980, “Economy of Accuracy,” Technology of Machine Tools, Vol. 5: Machine Tool Accuracy, Hocken, R., ed., Lawrence Livermore National Laboratories, University of California, Livermore, CA.
43.
Takada
K.
Tanabe
I.
1987
, “Basic Study on Thermal Deformation of Machine Tool Structure Composed of Epoxy Resin Concrete and Cast Iron
,” Bulletin of Japan Society of Precision Engineering
, Vol. 21
, No. 3
, pp. 173
–178
.44.
Tlusty, J., and Mutch, G. F., 1973, “Testing and Evaluation Thermal Deformations of Machine Tools,” Proceedings, The 14th MTDR Conference, Vol. 14, pp. 285–297.
45.
Wang, L., and Moriwaki, T., 1994, “An Approach to Dynamic Analysis of Thermal Problems for Machines Under Operating States,” Mem. Grad. School Sci. & Technol., Kobe Univ., 12-A: 157–173.
46.
Weck, M., and Zangs, L., 1975, “Computing the Thermal Behavior of Machine Tools Using the Finite Element Method-Possibilities and Limitations,” Proceedings, The 16th MTDR Conference, Vol. 16, pp. 185–194.
47.
Woytowitz, M. A., et al., 1989, “Tool Path Error Analysis for High Precision Milling with a Magnetic Bearing Spindle,” 1989 ASME Publication, pp. 129–142.
48.
Yang, S., Yuan, J., and Ni, J., 1996a, “Accuracy Enhancement of a Horizontal Machining Center,” Journal of Manufacturing Systems, Vol. 15, No. 2.
49.
Yang
S.
Yuan
J.
Ni
J.
1996
b, “The Improvement of Thermal Error Modeling and Compensation on Machine Tools by CMAC Neural Network
,” International Journal of Machine Tools and Manufacture
, Vol. 36
, No. 4
, pp. 527
–537
.50.
Yang, S., Yuan, J., and Ni, J., 1996c, “Real-Time Cutting Force-Induced Error Compensation on a Turning Center,” Proceedings of the Second S. M. Wu Symposium, Ann Arbor.
51.
Yee, K. W., and Gavin, R. J., 1990, “Implementing Fast Part Probing and Error Compensation on Machine Tools,” Technical Report NISTIR-4447, National Institute of Standards and Technology, Gaithersburg, MD.
52.
Yoshida
Y.
Honda
F.
1967
, “Thermal Deformation of Machine Tool Structure—The Bed of a Lathe
,” Annals of the CIRP
, Vol. 15
, pp. 337
–344
.53.
Zhang
G.
Wang
C.
Hu
X.
Jing
F.
1985
, “Error Compensation of Coordinate Measuring Machines
,” Annals of CIRP
, Vol. 34
, No. 1
, pp. 445
–448
.54.
Ziegert
J. C.
Mize
C. D.
1994
, “Laser Ball Bar: A New Instrument for Machine Tool Metrology
,” Precision Engineering
, V. 16
, No. 4
, pp. 259
–267
.
This content is only available via PDF.
Copyright © 1997
by The American Society of Mechanical Engineers
You do not currently have access to this content.