Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
NARROW
Format
Article Type
Subject Area
Topics
Date
Availability
1-1 of 1
Keywords: control of communication networks
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Article Type: Research Papers
Letters Dyn. Sys. Control. January 2021, 1(1): 011002.
Paper No: ALDSC-19-1049
Published Online: March 3, 2020
...@nmt.edu 23 10 2019 07 02 2020 10 02 2020 14 02 2020 control of communication networks delay systems networked control systems switched systems Recent advancement of distributed and parallel computing technologies has brought massive processing capabilities in...
Abstract
This paper proposes a control algorithm for stable implementation of asynchronous parallel quadratic programing (PQP) through a dual decomposition technique. In general, distributed and parallel optimization requires synchronization of data at each iteration step due to the interdependency of data. The synchronization latency may incur a large amount of waiting time caused by an idle process during computation. We aim to mitigate this synchronization penalty in PQP problems by implementing asynchronous updates of the dual variable. The price to pay for adopting asynchronous computing algorithms is the unpredictability of the solution, resulting in a tradeoff between speedup and accuracy. In the worst case, the state of interest may become unstable owing to the stochastic behavior of asynchrony. The stability condition of asynchronous PQP problems is investigated by employing the switched system framework. A formal algorithm is provided to ensure the asymptotic stability of dual variables. Furthermore, it is shown that the implementation of the proposed algorithm guarantees the uniqueness of optimal solutions, irrespective of asynchronous behavior. To verify the validity of the proposed methods, simulation results are presented.