Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
NARROW
Date
Availability
1-1 of 1
Metallic composites
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Article Type: Research Papers
Letters Dyn. Sys. Control. January 2021, 1(1): 011006.
Paper No: ALDSC-19-1100
Published Online: March 6, 2020
Abstract
A recent experiment by Kim’s group from the University of Nevada, Las Vegas, has shown the possibility of actuating ionomer cilia in salt solution. When these actuators are placed between two external electrodes, across which a small voltage is applied, they move toward the cathode. This is in stark contrast with ionic polymer metal composites, where the same ionomers are plated by metal electrodes but bending occurs toward the anode. Here, we seek to unravel the factors underlying the motion of ionomer cilia in salt solution through a physically based model of actuation. In our model, electrochemistry is described through the Poisson–Nernst–Planck system in terms of concentrations of cations and anions and voltage. Through finite element analysis, we establish that Maxwell stress is the main driving force for the motion of the cilia. This study constitutes a first effort toward understanding the motion of ionomer cilia in salt solution, which, in turn, may help elucidate the physical underpinnings of actuation in ionic polymer metal composites.