Abstract

Electromagnetic actuators provide fast speed, large forces, high strokes, and wide bandwidths. Most designs, however, are constructed from rigid components, making these benefits inaccessible for many soft robotics applications. In this work, we develop a new soft electromagnetic linear actuator using liquid gallium–indium for the conductor and neodymium–iron–boron and polymer composites for the permanent magnet. When combined in a solenoid configuration, high strokes can be generated using entirely soft components. To emulate the pulsing motion of Xenia coral arms, we develop an additional soft flexure system that converts the linear translation to rotary motion. The design and fabrication of the electromagnetic actuator and compliant flexure are first described. Models for the magnetic forces and the joint kinematics are then developed and compared with the experimental results. Finally, the robot dynamics are analyzed using stochastic system identification techniques. Results show that the compliant actuator is able to achieve an 18 mm stroke, allowing the soft arms to bend up to 120 deg. This further enables the tips of the arms to traverse an arc length of 42 mm. Bandwidths up to 30 Hz were also observed. While this article focuses on emulating a biological system, this highly deformable actuator design can also be utilized for fully soft grasping or wearables applications.

References

References
1.
Cianchetti
,
M.
,
Calisti
,
M.
,
Margheri
,
L.
,
Kuba
,
M.
, and
Laschi
,
C.
,
2015
, “
Bioinspired Locomotion and Grasping in Water: The Soft Eight-Arm Octopus Robot
,”
Bioinspir. Biomim.
,
10
(
3
), p.
035003
. 10.1088/1748-3190/10/3/035003
2.
Kim
,
J.
,
Alspach
,
A.
, and
Yamane
,
K.
,
2015
, “
3D Printed Soft Skin for Safe Human-Robot Interaction
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Hamburg, Germany
,
Sept. 28–Oct. 2
, pp.
2419
2425
.
3.
Asbeck
,
A. T.
,
Dyer
,
R. J.
,
Larusson
,
A. F.
, and
Walsh
,
C. J.
,
2013
, “
Biologically-Inspired Soft Exosuit
,”
2013 IEEE 13th International Conference on Rehabilitation Robotics (ICORR)
,
Seattle, WA
,
June 24–26
, pp.
1
8
.
4.
Amend
,
J.
,
Cheng
,
N.
,
Fakhouri
,
S.
, and
Culley
,
B.
,
2016
, “
Soft Robotics Commercialization: Jamming Grippers From Research to Product
,”
Soft Rob.
,
3
(
4
), pp.
213
222
. 10.1089/soro.2016.0021
5.
Kremien
,
M.
,
Shavit
,
U.
,
Mass
,
T.
, and
Genin
,
A.
,
2013
, “
Benefit of Pulsation in Soft Corals
,”
Proc. Natl. Acad. Sci. USA
,
110
(
22
), pp.
8978
8983
. 10.1073/pnas.1301826110
6.
7.
Wehner
,
M.
,
Truby
,
R. L.
,
Fitzgerald
,
D. J.
,
Mosadegh
,
B.
,
Whitesides
,
G. M.
,
Lewis
,
J. A.
, and
Wood
,
R. J.
,
2016
, “
An Integrated Design and Fabrication Strategy for Entirely Soft, Autonomous Robots
,”
Nature
,
536
(
7617
), pp.
451
455
. 10.1038/nature19100
8.
Katzschmann
,
R. K.
,
Marchese
,
A. D.
, and
Rus
,
D.
,
2016
,
Experimental Robotics: The 14th International Symposium on Experimental Robotics
, Vol.
109
,
Springer International Publishing
, pp.
405
420
.
9.
Ilievski
,
F.
,
Mazzeo
,
A. D.
,
Shepherd
,
R. F.
,
Chen
,
X.
, and
Whitesides
,
G. M.
,
2011
, “
Soft Robotics for Chemists
,”
Angew. Chem., Int. Ed.
,
50
(
8
), pp.
1890
1895
. 10.1002/anie.201006464
10.
Fries
,
F.
,
Miyashita
,
S.
,
Rus
,
D.
,
Pfeifer
,
R.
, and
Damian
,
D. D.
,
2014
, “
Electromagnetically Driven Elastic Actuator
,”
IEEE International Conference on Robotics and Bioimimetrics (ROBIO)
,
Bali, Indonesia
,
Dec. 5–10
, pp.
309
314
.
11.
Wang
,
C.
,
Wang
,
C.
,
Huang
,
Z.
, and
Xu
,
S.
,
2018
, “
Materials and Structures Towards Soft Electronics
,”
Adv. Mater.
,
30
(
50
), p.
1801368
. 10.1002/adma.201801368
12.
Guo
,
R.
,
Sun
,
X.
,
Yao
,
S.
,
Duan
,
M.
,
Wang
,
H.
,
Liu
,
J.
, and
Deng
,
Z.
,
2019
, “
Semi-Liquid-Metal-(Ni-EGaIn)-Based Ultraconformable Electronic Tattoo
,”
Adv. Mater. Technol.
,
4
(
8
), p.
1900183
. 10.1002/admt.201900183
13.
Zhu
,
S.
,
So
,
J.
,
Mays
,
R.
,
Desai
,
S.
,
Barnes
,
W. R.
,
Pourdeyhimi
,
B.
, and
Dickey
,
M. D.
,
2013
, “
Ultrastretchable Fibers With Metallic Conductivity Using a Liquid Metal Alloy Core
,”
Adv. Funct. Mater.
,
23
(
18
), pp.
2308
2314
. 10.1002/adfm.201202405
14.
Jin
,
S. W.
,
Park
,
J.
,
Hong
,
S. Y.
,
Park
,
H.
,
Jeong
,
Y. R.
, and
Ha
,
J. S.
,
2015
, “
Stetchable Loudspeaker Using Liquid Metal Microchannel
,”
Nat. Sci. Rep.
,
5
(
1
), p.
11695
. 10.1038/srep11695
15.
Guo
,
R.
,
Sheng
,
L.
,
Gong
,
H.-Y.
, and
Liu
,
J.
,
2018
, “
Liquid Metal Spiral Coil Enabled Soft Electromagnetic Actuator
,”
Sci. China
,
61
(
4
), pp.
516
521
. 10.1007/s11431-017-9063-2
16.
Berengueres
,
J.
,
Tadakuma
,
K.
,
Kamoi
,
T.
, and
Kratz
,
R.
,
2007
, “
Compliant Distributed Magnetic Adhesion Device for Wall Climbing
,”
IEEE International Conference on Robotics and Automation
,
Roma, Italy
,
Apr. 10–14
, pp.
1256
1261
.
17.
Abbott
,
J. J.
,
Ergeneman
,
O.
,
Kummer
,
M. P.
,
Hirt
,
A. M.
, and
Nelson
,
B. J.
,
2007
, “
Modeling Magnetic Torque and Force for Controlled Manipulation of Soft-Magnetic Bodies
,”
IEEE Trans. Rob.
,
23
(
6
), pp.
1247
1252
. 10.1109/TRO.2007.910775
18.
Kohls
,
N.
,
Dias
,
B.
,
Mensah
,
Y.
,
Ruddy
,
B. P.
, and
Mazumdar
,
Y. C.
,
2020
, “
Compliant Electromagnetic Actuator Architecture for Soft Robotics
,”
IEEE International Conference on Robotics and Automation (ICRA)
,
Paris, France
,
May 31–Aug. 31
, pp.
9042
9049
.
19.
Zhao
,
R.
,
Kim
,
Y.
,
Chester
,
S. A.
,
Sharma
,
P.
, and
Zhao
,
X.
,
2019
, “
Mechanics of Hard-Magnetic Soft Materials
,”
J. Mech. Phys. Solids.
,
124
, pp.
244
263
. 10.1016/j.jmps.2018.10.008
20.
Kim
,
Y.
,
Yuk
,
H.
,
Zhao
,
R.
,
Chester
,
S. A.
, and
Zhao
,
X.
,
2018
, “
Printing Ferromagnetic Domains for Untethered Fast-Ttransforming Soft Materials
,”
Nature
,
558
(
7709
), pp.
274
279
. 10.1038/s41586-018-0185-0
21.
Kim
,
Y.
,
Parada
,
G. A.
,
Liu
,
S.
, and
Zhao
,
X.
,
2019
, “
Ferromagnetic Soft Continuum Robots
,”
Sci. Rob.
,
4
(
33
), p.
eaax7329
. 10.1126/scirobotics.aax7329
22.
Do
,
T. N.
,
Phan
,
H.
,
Nguyen
,
T. -Q.
, and
Viseli
,
Y.
,
2018
, “
Miniature Soft Electromagnetic Actuators for Robotic Applications
,”
Adv. Funct. Mater.
,
28
(
18
), p.
1800244
. 10.1002/adfm.201800244
23.
Dickey
,
M. D.
,
Chiechi
,
R. C.
,
Larsen
,
R. J.
,
Weiss
,
E. A.
,
Weitz
,
D. A.
, and
Whitesides
,
G. M.
,
2008
, “
Eutectic Gallium-Indium (EGaIn): A Liquid Metal Alloy for the Formation of Stable Structures in Microchannels at Room Temperature
,”
Adv. Funct. Mater.
,
18
(
7
), pp.
1097
1104
. 10.1002/adfm.200701216
24.
Howell
,
L. L.
,
2013
,
Compliant Mechanisms
,
Springer
,
London
.
25.
She
,
Y.
,
Meng
,
D.
,
Su
,
H.-J.
,
Song
,
S.
, and
Wang
,
J.
,
2018
, “
Introducing Mass Parameters to Pseudo-Rrigid-Bbody Models for Precisely Predicting Dynamics of Compliant Mechanisms
,”
Mech. Mach. Theory.
,
126
, pp.
273
294
. 10.1016/j.mechmachtheory.2018.04.005
26.
EcoflexTM, “Super-Soft, Addition Cure Silicone Rubbers,” https://www.smooth-on.com/tb/files/ECOFLEX_SERIES_TB.pdf, Accessed February 6, 2021
.
27.
Craig
,
J.
,
2018
,
Introduction to Robotics: Mechanics and Control
, 3rd ed.,
Pearson Education International
,
Upper Saddle River, NJ
.
28.
Murray
,
R.
,
Li
,
Z.
, and
Sastry
,
S.
,
1994
,
A Mathematical Introduction to Robot Manipulation
,
CRC Press
,
Boca Raton, FL
.
29.
Shiri
,
A.
, and
Shoulaie
,
A.
,
2009
, “
A New Methodology for Magnetic Force Calculations Between Planar Spiral Coils
,”
Progress Electromagnetics Res.
,
95
, pp.
39
57
. 10.2528/PIER09031608
30.
Robertson
,
W.
,
Cazzolato
,
B.
, and
Zander
,
A.
,
2012
, “
Axial Force Between a Thick Coil and a Cylindrical Permanent Magnet: Optimizing the Geometry of an Electromagnetic Actuator
,”
IEEE. Trans. Magn.
,
48
(
9
), pp.
2479
2487
. 10.1109/TMAG.2012.2194789
31.
Alzera
,
H.
, and
Qiub
,
S.-L.
,
2004
, “
Monotonicity Theorems and Inequalities for the Complete Elliptic Integrals
,”
J. Computat. Appl. Math.
,
172
(
2
), pp.
289
312
. 10.1016/j.cam.2004.02.009
32.
Babic
,
S. I.
, and
Akyel
,
C.
,
2008
, “
Magnetic Force Calculation Between Thin Coaxial Circular Coils in Air
,”
IEEE. Trans. Magn.
,
44
(
4
), pp.
445
452
. 10.1109/TMAG.2007.915292
33.
Chen
,
Y.
, and
Hunter
,
I. W.
,
2012
, “
Stochastic System Identification of Skin Properties: Linear and Wiener Static Nonlinear Methods
,”
Ann. Biomed. Eng.
,
40
(
10
), pp.
2277
2291
. 10.1007/s10439-012-0580-x
34.
González
,
G.
,
Sagartzazu
,
X.
,
Schuhmache
,
A.
, and
Isasa
,
I.
,
2010
, “
Multiple Coherence Method in Time Domain for the Analysis of the Transmission Paths of Noise and Vibrations With Non-Stationary Signals
,”
Proceedings of the 2010 International Conference of Noise and Vibration Engineering
,
Leuven, Belgium
,
Sept. 20–22
, pp.
3927
3941
.
35.
Granell
,
P. N.
,
Wang
,
G.
,
Bermudez
,
G. S. C.
,
Kosub
,
T.
,
Golmar
,
F.
,
Steren
,
L.
,
Fassbender
,
J.
, and
Makarov
,
D.
,
2018
, “
Highly Compliant Planar Hall Effect Sensor With Sub 200nT Sensitivity
,”
Nat. Partner J. Flexible Electron.
,
3
(
1
), pp.
1
6
. 10.1038/s41528-018-0046-9
36.
Chen
,
Y.
,
Oliveira
,
J. M.
, and
Hunter
,
I. W.
,
2013
, “
Two-Axis Bend Sensor Design, Kinematics and Control for a Continuum Robotic Endoscope
,”
IEEE International Conference on Robotics and Automation (ICRA)
,
Karlsruhe, Germany
,
May 6–10
, pp.
696
702
.
You do not currently have access to this content.