Abstract

The collective behavior of swarms is extremely difficult to estimate or predict, even when the local agent rules are known and simple. The presented work seeks to leverage the similarities between fluids and swarm systems to generate a thermodynamics-inspired characterization of the collective behavior of robotic swarms. While prior works have borrowed tools from fluid dynamics to design swarming behaviors, they have usually avoided the task of generating a fluids-inspired macroscopic state (or macrostate) description of the swarm. This work will bridge the gap by seeking to answer the following question: is it possible to generate a small set of thermodynamics-inspired macroscopic properties that may later be used to quantify all possible collective behaviors of swarm systems? In this paper, we present three macroscopic properties analogous to pressure, temperature, and density of a gas to describe the behavior of a swarm that is governed by only attractive and repulsive agent interactions. These properties are made to satisfy an equation similar to the ideal gas law and also generalized to satisfy the virial equation of state for real gases. Finally, we investigate how swarm specifications such as density and average agent velocity affect the system macrostate.

References

References
1.
Werfel
,
J.
,
Petersen
,
K.
, and
Nagpal
,
R.
,
2014
, “
Designing Collective Behavior in a Termite-Inspired Robot Construction Team
,”
Science
,
343
(
6172
), pp.
754
758
. 10.1126/science.1245842
2.
Naldi
,
G.
,
Pareschi
,
L.
, and
Toscani
,
G.
,
2010
,
Mathematical Modeling of Collective Behavior in Socio-Economic and Life Sciences
(
Modeling and Simulation in Science, Engineering and Technology
),
Birkhäuser
,
Boston
.
3.
Jerath
,
K.
, and
Brennan
,
S.
,
2015
, “
Identification of Locally Influential Agents in Self-Organizing Multi-Agent Systems
,”
American Control Conference
,
Chicago, IL
,
July 1–3
,
IEEE
, pp.
335
340
.
4.
Bajo
,
J.
,
Mathieu
,
P.
, and
Escalona
,
M. J.
,
2017
, “
Multi-Agent Technology in Economics
,”
Intell. Syst. Accounting, Finance Manage.
,
24
(
2–3
), pp.
59
61
. 10.1002/isaf.1415
5.
Diamond
,
J.
, and
Ford
,
L. E.
,
2000
, “
Guns, Germs, and Steel: The Fates of Human Societies
,”
Perspect. Biol. Med.
,
43
(
4
), p.
609
. 10.1353/pbm.2000.0045
6.
Moussaïd
,
M.
,
Helbing
,
D.
, and
Theraulaz
,
G.
,
2011
, “
How Simple Rules Determine Pedestrian Behavior and Crowd Disasters
,”
Proc. Natl. Acad. Sci.
,
108
(
17
), pp.
6884
6888
. 10.1073/pnas.1016507108
7.
Brambilla
,
M.
,
Ferrante
,
E.
,
Birattari
,
M.
, and
Dorigo
,
M.
,
2013
, “
Swarm Robotics: A Review From the Swarm Engineering Perspective
,”
Swarm Intell.
,
7
(
1
), pp.
1
41
. 10.1007/s11721-012-0075-2
8.
Couzin
,
I.
,
Krause
,
J.
,
James
,
R.
,
Ruxton
,
G.
, and
Franks
,
N.
,
2002
, “
Collective Memory and Spatial Sorting in Animal Groups
,”
J. Theor. Biol.
,
218
(
1
), pp.
1
11
. 10.1006/jtbi.2002.3065
9.
Lennard-Jones
,
J.
,
1924
, “
On the Determination of Molecular Fields—II From The Equation of State of a Gas
,”
Proced. R. Soc. London A
,
106
(
738
), pp.
463
477
.
10.
Gazi
,
V.
, and
Passino
,
K. M.
,
2003
, “
Stability Analysis of Swarms
,”
IEEE Trans. Autom. Control
,
48
(
4
), pp.
692
697
. 10.1109/TAC.2003.809765
11.
Romanczuk
,
P.
, and
Schimansky-Geier
,
L.
,
2012
, “
Swarming and Pattern Formation Due to Selective Attraction and Repulsion
,”
Interface Focus
,
2
(
6
), pp.
746
756
. 10.1098/rsfs.2012.0030
12.
Parrish
,
J. K.
, and
Hamner
,
W. M.
,
1997
,
Animal Groups in Three Dimensions: How Species Aggregate
,
Cambridge University Press
,
Cambridge, UK
.
13.
Yamagishi
,
K.
, and
Suzuki
,
T.
,
2017
, “
Collective Movement Method for Swarm Robot Based on a Thermodynamic Model
,”
Int. J. Adv. CS Appl.
,
8
(
11
), pp.
513
519
.
14.
Spears
,
D.
,
Kerr
,
W.
, and
Spears
,
W.
,
2009
, “
Fluid-Like Swarms With Predictable Macroscopic Behavior
,”
Safety and Security in Multiagent Systems
,
M.
Barley
,
H.
Mouratidis
,
A.
Unruh
,
D.
Spears
,
P.
Scerri
, and
F.
Massacci
, eds.,
Springer
,
Berlin, Heidelberg
, pp.
175
190
.
15.
Van Dyke Parunak
,
H.
, and
Brueckner
,
S.
,
2001
, “
Entropy and Self-Organization in Multi-Agent Systems
,”
Proceedings of the Fifth International Conference on Autonomous Agents, AGENTS ’01
,
Montreal, Quebec, Canada
,
May 28–June 1
,
ACM
, pp.
124
130
.
16.
Mwaffo
,
V.
,
Anderson
,
R. P.
, and
Porfiri
,
M.
,
2015
, “
Collective Dynamics in the Vicsek and Vectorial Network Models Beyond Uniform Additive Noise
,”
J. Nonlinear Sci.
,
25
(
5
), pp.
1053
1076
. 10.1007/s00332-015-9260-y
17.
Porfiri
,
M.
, and
Ariel
,
G.
,
2016
, “
On Effective Temperature in Network Models of Collective Behavior
,”
Chaos: Interdiscip. J. Nonlinear Sci.
,
26
(
4
), p.
043109
. 10.1063/1.4946775
18.
Crosato
,
E.
,
Spinney
,
R. E.
,
Nigmatullin
,
R.
,
Lizier
,
J. T.
, and
Prokopenko
,
M.
,
2018
, “
Thermodynamics and Computation During Collective Motion Near Criticality
,”
Phys. Rev. E
,
97
(
1
), p.
012120
. 10.1103/PhysRevE.97.012120
19.
Vicsek
,
T.
,
1995
, “
Novel Type of Phase Transition in a System of Self-Driven Particles
,”
Phys. Rev. Lett.
,
74
(
18
), pp.
3612
3615
. 10.1103/PhysRevLett.74.3612
20.
Hamann
,
H.
,
Schmickl
,
T.
, and
Crailsheim
,
K.
,
2011
, “
Explaining Emergent Behavior in a Swarm System Based on An Inversion of the Fluctuation Theorem
,” Advances in Artificial Life, ECAL 2011: Proceedings of the 11th European Conference on the Synthesis and Simulation of Living Systems, T. Lenaerts, M. Giacobini, H. Bersini, P. Bourgine, M. Dorigo, and R. Doursat, eds., MIT Press, pp.
302
309
.
21.
Willis
,
L.
, and
Kabla
,
A.
,
2016
, “
Emergent Patterns From Probabilistic Generalizations of Lateral Activation and Inhibition
,”
J. R. Soc. Interface
,
13
(
118
), p.
20151077
. 10.1098/rsif.2015.1077
22.
Topaz
,
C. M.
, and
Bertozzi
,
A. L.
,
2004
, “
Swarming Patterns in a Two-Dimensional Kinematic Model for Biological Groups
,”
SIAM J. Appl. Math.
,
65
(
1
), pp.
152
174
. 10.1137/S0036139903437424
23.
Brambilla
,
M.
,
Ferrante
,
E.
, and
Birattari
,
M.
,
2012
, “
Swarm Robotics : A Review From the Swarm Engineering Perspective
,”
Swarm Intelligence
,
7
(
1
), pp.
1
41
. 10.1007/s11721-012-0075-2
24.
Gazi
,
V.
, and
Passino
,
K. M.
,
2004
, “
A Class of Attractions/repulsion Functions for Stable Swarm Aggregations
,”
Int. J. Control
,
77
(
18
), pp.
1567
1579
. 10.1080/00207170412331330021
25.
Yu
,
W.
,
Chen
,
G.
,
Cao
,
M.
,
,
J.
, and
Zhang
,
H.-T.
,
2013
, “
Swarming Behaviors in Multi-Agent Systems With Nonlinear Dynamics
,”
Chaos: Interdiscip. J. Nonlinear Sci.
,
23
(
4
), p.
043118
. 10.1063/1.4829631
26.
Chrisman
,
D. C.
, and
Leach
,
J. W.
,
1973
, “
Intermolecular Parameters and Combining Rules for the Square Well Potential
,”
Ind. Eng. Chem. Fundam.
,
12
(
4
), pp.
423
431
. 10.1021/i160048a005
27.
Friedman
,
A.
,
1957
, “
Intermolecular Forces in Air
,”
J. Res. Nat. Bur. Stand.
,
58
(
2
), p.
93
. 10.6028/jres.058.012
28.
Assael
,
M.
,
Trusler
,
J.
, and
Tsolakis
,
T.
,
1996
,
Thermophysical Properties of Fluids: An Introduction to Their Prediction
,
Imperial College Press
,
London
.
You do not currently have access to this content.