Abstract

A recent experiment by Kim’s group from the University of Nevada, Las Vegas, has shown the possibility of actuating ionomer cilia in salt solution. When these actuators are placed between two external electrodes, across which a small voltage is applied, they move toward the cathode. This is in stark contrast with ionic polymer metal composites, where the same ionomers are plated by metal electrodes but bending occurs toward the anode. Here, we seek to unravel the factors underlying the motion of ionomer cilia in salt solution through a physically based model of actuation. In our model, electrochemistry is described through the Poisson–Nernst–Planck system in terms of concentrations of cations and anions and voltage. Through finite element analysis, we establish that Maxwell stress is the main driving force for the motion of the cilia. This study constitutes a first effort toward understanding the motion of ionomer cilia in salt solution, which, in turn, may help elucidate the physical underpinnings of actuation in ionic polymer metal composites.

References

References
1.
Carrico
,
J. D.
,
Tyler
,
T.
, and
Leang
,
K. K.
,
2017
, “
A Comprehensive Review of Select Smart Polymeric and Gel Actuators for Soft Mechatronics and Robotics Applications: Fundamentals, Freeform Fabrication, and Motion Control
,”
Int. J. Smart Nano Mater.
,
8
(
4
), pp.
144
213
. 10.1080/19475411.2018.1438534
2.
Stalbaum
,
T.
,
Trabia
,
S.
,
Hwang
,
T.
,
Olsen
,
Z.
,
Nelson
,
S.
,
Shen
,
Q.
,
Lee
,
D.-C.
,
Kim
,
K. J.
,
Carrico
,
J.
,
Leang
,
K. K.
,
Palmre
,
V.
,
Nam
,
J.
,
Park
,
I.
,
Tiwari
,
R.
,
Kim
,
D.
,
Kim
,
S.
, and
Bar-Cohen
,
Y.
,
2018
,
Advances in Manufacturing and Processing of Materials and Structures
,
CRC Press
,
Boca Raton
, pp.
379
395
.
3.
Bhandari
,
B.
,
Lee
,
G.-Y.
, and
Ahn
,
S.-H.
,
2012
, “
A Review on IPMC Material as Actuators and Sensors: Fabrications, Characteristics and Applications
,”
Int. J. Precision Eng. Manuf.
,
13
(
1
), pp.
141
163
. 10.1007/s12541-012-0020-8
4.
Jo
,
C.
,
Pugal
,
D.
,
Oh
,
I.-K.
,
Kim
,
K. J.
, and
Asaka
,
K.
,
2013
, “
Recent Advances in Ionic Polymer—Metal Composite Actuators and Their Modeling and Applications
,”
Prog. Polym. Sci.
,
38
(
7
), pp.
1037
1066
. 10.1016/j.progpolymsci.2013.04.003
5.
Shahinpoor
,
M.
,
2015
,
Ionic Polymer Metal Composites (IPMCs): Smart Multi-Functional Materials and Artificial Muscles
,
Royal Society of Chemistry
,
Cambridge
.
6.
Chen
,
Z.
,
2017
, “
A Review on Robotic Fish Enabled by Ionic Polymer—Metal Composite Artificial Muscles
,”
Rob. Biomimetics
,
4
(
24
), pp.
1
13
. 10.1186/s40638-017-0081-3
7.
Cha
,
Y.
, and
Porfiri
,
M.
,
2014
, “
Mechanics and Electrochemistry of Ionic Polymer Metal Composites
,”
J. Mech. Phys. Solids
,
71
, pp.
156
178
. 10.1016/j.jmps.2014.07.006
8.
Kim
,
K. J.
,
Palmre
,
V.
,
Stalbaum
,
T.
,
Hwang
,
T.
,
Shen
,
Q.
, and
Trabia
,
S.
,
2016
, “
Promising Developments in Marine Applications With Artificial Muscles: Electrodeless Artificial Cilia Microfibers
,”
Mar. Technol. Soc.
,
50
(
5
), pp.
24
34
. 10.4031/MTSJ.50.5.4
9.
Boldini
,
A.
,
Rosen
,
M.
,
Cha
,
Y.
, and
Porfiri
,
M.
,
2019
, “
Contactless Actuation of Perfluorinated Ionomer Membranes in Salt Solution: An Experimental Investigation
,”
Sci. Rep.
,
9
(
1
), pp.
1
14
. 10.1038/s41598-019-48235-9
10.
Porfiri
,
M.
,
Sharghi
,
H.
, and
Zhang
,
P.
,
2018
, “
Modeling Back-Relaxation in Ionic Polymer Metal Composites: The Role of Steric Effects and Composite Layers
,”
J. Appl. Phys.
,
123
(
1
), p.
014901
. 10.1063/1.5004573
11.
Bard
,
A. J.
, and
Faulkner
,
L. R.
,
2001
,
Electrochemical Methods—Fundamentals and Applications
,
John Wiley & Sons
,
Hoboken, NJ
.
12.
Bazant
,
M. Z.
,
Thornton
,
K.
, and
Ajdari
,
A.
,
2004
, “
Diffuse-Charge Dynamics in Electrochemical Systems
,”
Phys. Rev. E
,
70
(
2
), pp.
021506
. 10.1103/PhysRevE.70.021506
13.
Porfiri
,
M.
,
2008
, “
Charge Dynamics in Ionic Polymer Metal Composites
,”
J. Appl. Phys.
,
104
(
10
), pp.
104915
. 10.1063/1.3017467
14.
Kilic
,
M. S.
,
Bazant
,
M. Z.
, and
Ajdari
,
A.
,
2007
, “
Steric Effects in the Dynamics of Electrolytes at Large Applied Voltages. I. Double-Layer Charging
,”
Phys. Rev. E
,
75
(
2
), pp.
021502
. 10.1103/physreve.75.021502
15.
Kilic
,
M. S.
,
Bazant
,
M. Z.
, and
Ajdari
,
A.
,
2007
, “
Steric Effects in the Dynamics of Electrolytes at Large Applied Voltages. II. Modified Poisson–Nernst–Planck Equations
,”
Phys. Rev. E
,
75
(
2
), pp.
021503
. 10.1103/physreve.75.021503
16.
Nemat-Nasser
,
S.
, and
Li
,
J. Y.
,
2000
, “
Electromechanical Response of Ionic Polymer-Metal Composites
,”
J. Appl. Phys.
,
87
(
7
), pp.
3321
3331
. 10.1063/1.372343
17.
Mauritz
,
K. A.
, and
Fu
,
R.-M.
,
1988
, “
Dielectric Relaxation Studies of Ion Motions in Electrolyte-Containing Perfluorosulfonate Ionomers. 1. NaOH and NaCl Systems
,”
Macromolecules
,
21
(
5
), pp.
1324
1333
. 10.1021/ma00183a024
18.
Moya
,
A. A.
,
2015
, “
Theory of the Formation of the Electric Double Layer at the Ion Exchange Membrane-Solution Interface
,”
Phys. Chem. Chem. Phys.
,
17
(
7
), pp.
5207
5218
. 10.1039/C4CP05702C
19.
Porfiri
,
M.
,
Leronni
,
A.
, and
Bardella
,
L.
,
2017
, “
An Alternative Explanation of Back-Relaxation in Ionic Polymer Metal Composites
,”
Extreme Mech. Lett.
,
13
, pp.
78
83
. 10.1016/j.eml.2017.01.009
20.
Chu
,
K. T.
, and
Bazant
,
M. Z.
,
2005
, “
Electrochemical Thin Films at and Above the Classical Limiting Current
,”
SIAM J. Appl. Math.
,
65
(
5
), pp.
1485
1505
. 10.1137/040609926
You do not currently have access to this content.