Abstract

Linear temporal and spatial stability analyses of the magnetohydrodynamic boundary layer flow over a wedge embedded in a porous medium have been carried out to analyze the effects of pressure gradient, Hartmann and Darcy numbers. First, we determine the base state velocity profiles by imposing suitable similarity transformations on governing boundary layer equations and then find linear perturbed equations involving Reynolds number and disturbance wavenumber using Fourier modes. The Chebyshev spectral collocation method which provides insight into the complete structure of the eigenspectrum is used. The effect of Hartmann and Darcy numbers on the boundary layer is to stabilize the flow for all adverse pressure gradient parameters while only unstable modes are noticed in the absence of these effects. The noticed unstable modes are always part of the wall mode for which the phase speeds are found to approach zero. The eigenspectrum for all involved parameters has a balloon-like structure with the appearance of wall mode instability. The critical Reynolds number is found to be increasing for increasing pressure gradient, Hartmann and Darcy numbers. For an adverse pressure gradient, the energy budget shows that the energy production due to Reynolds stress dominates the viscous dissipation which results in destabilization of the flow, while the kinetic energy due to magnetic field and porous medium plays a role in stabilizing the flow. The physical dynamics behind these interesting modes are discussed.

References

1.
Klemp
,
J. B.
, and
Acrivos
,
A.
,
1972
, “
A Method for Integrating the Boundary-Layer Equations Through a Region of Reverse Flow
,”
J. Fluid Mech.
,
53
(
1
), pp.
177
191
.10.1017/S0022112072000096
2.
Riley
,
N.
, and
Weidman
,
P. D.
,
1989
, “
Multiple Solutions of the Falkner–Skan Equation for Flow Past a Stretching Boundary
,”
SIAM J. Appl. Math.
,
49
(
5
), pp.
1350
1358
.10.1137/0149081
3.
Andersson
,
H. I.
,
Bech
,
K. H.
, and
Dandapat
,
B. S.
,
1992
, “
Magnetohydrodynamic Flow of a Power-Law Fluid Over a Stretching Sheet
,”
Int. J. Non-Linear Mech.
,
27
(
6
), pp.
929
936
.10.1016/0020-7462(92)90045-9
4.
Andersson
,
H. I.
, and
De Korte
,
E.
,
2002
, “
MHD Flow of a Power-Law Fluid Over a Rotating Disk
,”
Eur. J. Mech.-B/Fluids
,
21
(
3
), pp.
317
324
.10.1016/S0997-7546(02)01184-6
5.
Mahmoud
,
M. A. A.
, and
Mahmoud
,
M. A. E.
,
2006
, “
Analytical Solutions of Hydromagnetic Boundary-Layer Flow of a non-Newtonian Power-Law Fluid Past a Continuously Moving Surface
,”
Acta Mech.
,
181
(
1–2
), pp.
83
89
.10.1007/s00707-005-0268-5
6.
Kudenatti
,
R. B.
,
Misbah
,
N. E.
, and
Bharathi
,
M. C.
,
2022
, “
Stability of Hydromagnetic Boundary Layer Flow of non-Newtonian Power-Law Fluid Flow Over a Moving Wedge
,”
Eng. Comput.
,
38
(
2
), pp.
1107
1126
.10.1007/s00366-020-01094-9
7.
Karkera
,
H.
,
Katagi
,
N. N.
, and
Kudenatti
,
R. B.
,
2020
, “
Analysis of General Unified MHD Boundary-Layer Flow of a Viscous Fluid-a Novel Numerical Approach Through Wavelets
,”
Math. Comput. Simul.
,
168
, pp.
135
154
.10.1016/j.matcom.2019.08.004
8.
Kudenatti
,
R. B.
, and
Amrutha
,
H.
,
2022
, “
MHD Boundary Layer Flow of Viscoelastic Fluid Over a Wedge in Porous Medium
,”
Arch. Appl. Mech.
,
92
(
12
), pp.
3983
3998
.10.1007/s00419-022-02275-2
9.
Aly
,
E. H.
,
Elliott
,
L.
, and
Ingham
,
D. B.
,
2003
, “
Mixed Convection Boundary-Layer Flow Over a Vertical Surface Embedded in a Porous Medium
,”
Eur. J. Mech.-B/Fluids
,
22
(
6
), pp.
529
543
.10.1016/S0997-7546(03)00059-1
10.
Celli
,
M.
,
Rees
,
D. A. S.
, and
Barletta
,
A.
,
2010
, “
The Effect of Local Thermal Non-Equilibrium on Forced Convection Boundary Layer Flow From a Heated Surface in Porous Media
,”
Int. J. Heat Mass Transfer
,
53
(
17–18
), pp.
3533
3539
.10.1016/j.ijheatmasstransfer.2010.04.014
11.
Prabha
,
G. S. S.
,
Bharathi
,
M. C.
, and
Kudenatti
,
R. B.
,
2020
, “
Heat Transfer Through Mixed Convection Boundary Layer in a Porous Medium: LTNE Analysis
,”
Appl. Therm. Eng.
,
179
, p.
115705
.10.1016/j.applthermaleng.2020.115705
12.
Wang
,
C. Y.
,
2021
, “
Boundary Layers in Darcy–Brinkman Flow
,”
ASME J. Fluids Eng.
,
143
(
2
), p.
024502
.10.1115/1.4048785
13.
Alokaily
,
S. A.
,
2021
, “
Simulation of Flow Through Variable Permeability Darcy–Brinkman Layers
,”
ASME J. Fluids Eng.
,
143
(
7
), p.
071205
.10.1115/1.4050137
14.
Gogate
,
S. S. P.
,
M. C
,
Bharathi.
, and
Kudenatti
,
R. B.
,
2021
, “
Linear Stability on the Local Thermal Nonequilibrium Model of Mixed Convection Boundary Layer Flow Over a Moving Wedge in a Porous Medium: Viscous Dissipation and Radiation Effects
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
143
(
4
), p.
041802
.10.1115/1.4049514
15.
Schowalter
,
W. R.
,
1960
, “
The Application of Boundary-Layer Theory to Power-Law Pseudoplastic Fluids: Similar Solutions
,”
AIChE J.
,
6
(
1
), pp.
24
28
.10.1002/aic.690060105
16.
Denier
,
J. P.
, and
Dabrowski
,
P. P.
,
2004
, “
On the Boundary–Layer Equations for Power-Law Fluids
,”
Proc. R. Soc. London. Ser. A
,
460
(
2051
), pp.
3143
3158
.10.1098/rspa.2004.1349
17.
Ishak
,
A.
,
Nazar
,
R.
, and
Pop
,
I.
,
2011
, “
Moving Wedge and Flat Plate in a Power-Law Fluid
,”
Int. J. Non-Linear Mech.
,
46
(
8
), pp.
1017
1021
.10.1016/j.ijnonlinmec.2011.04.020
18.
Kudenatti
,
R. B.
,
Misbah
,
N. E.
, and
Bharathi
,
M. C.
,
2021
, “
Boundary-Layer Flow of the Power-Law Fluid Over a Moving Wedge: A Linear Stability Analysis
,”
Eng. Comput.
,
37
(
3
), pp.
1807
1820
.10.1007/s00366-019-00914-x
19.
Kudenatti
,
R. B.
, and
Sandhya
,
L.
,
2021
, “
Local Thermal Nonequilibrium Analysis of Boundary Layer Flow of Carreau Fluid Over a Wedge in a Porous Medium
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
143
(
7
), p.
071801
.10.1115/1.4051128
20.
Cortell
,
R.
,
2007
, “
Flow and Heat Transfer in a Moving Fluid Over a Moving Flat Surface
,”
Theory Comput. Fluid Dyn.
,
21
(
6
), pp.
435
446
.10.1007/s00162-007-0056-z
21.
Hayat
,
T.
,
Hussain
,
M.
,
Nadeem
,
S.
, and
Mesloub
,
S.
,
2011
, “
Falkner-Skan Wedge Flow of a Power-Law Fluid With Mixed Convection and Porous Medium
,”
Comput. Fluids
,
49
(
1
), pp.
22
28
.10.1016/j.compfluid.2011.01.020
22.
Ibrahim
,
W.
, and
Shanker
,
B.
,
2012
, “
Boundary-Layer Flow and Heat Transfer of Nanofluid Over a Vertical Plate With Convective Surface Boundary Condition
,”
ASME J. Fluids Eng.
,
134
(
8
), p.
081203
.10.1115/1.4007075
23.
Kudenatti
,
R. B.
, and
Gogate
,
S. S. P.
,
2020
, “
Two-Phase Microscopic Heat Transfer Model for Three-Dimensional Stagnation Boundary-Layer Flow in a Porous Medium
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
142
(
2
), p.
022701
.10.1115/1.4045412
24.
Kudenatti
,
R. B.
,
Misbah
,
N. E.
, and
Bharathi
,
M. C.
,
2020
, “
Linear Stability of Momentum Boundary Layer Flow and Heat Transfer Over a Moving Wedge
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
142
(
6
), p.
061804
.10.1115/1.4046645
25.
Prabha
,
G. S. S.
,
Bharathi
,
M. C.
,
Misbah
,
N. E.
, and
Kudenatti
,
R. B.
,
2023
, “
A Computational Study of Three-Dimensional Laminar Boundary Layer Flow and Forced Convective Heat Transfer in a Porous Medium
,”
Archive Appl. Mech.
,
93
(
2
), pp.
551
569
.10.1007/s00419-022-02285-0
26.
Liao
,
S. J.
,
2003
, “
On the Analytic Solution of Magnetohydrodynamic Flows of non-Newtonian Fluids Over a Stretching Sheet
,”
J. Fluid Mech.
,
488
, pp.
189
212
.10.1017/S0022112003004865
27.
Sachdev
,
P. L.
,
Kudenatti
,
R. B.
, and
Bujurke
,
N. M.
,
2008
, “
Exact Analytic Solution of a Boundary Value Problem for the Falkner–Skan Equation
,”
Stud. Appl. Math.
,
120
(
1
), pp.
1
16
.10.1111/j.1467-9590.2007.00386.x
28.
Kudenatti
,
R. B.
,
Kirsur
,
S. R.
,
Achala
,
L. N.
, and
Bujurke
,
N. M.
,
2013
, “
Exact Solution of Two-Dimensional MHD Boundary Layer Flow Over a Semi-Infinite Flat Plate
,”
Commun. Nonlinear Sci. Numer. Simul.
,
18
(
5
), pp.
1151
1161
.10.1016/j.cnsns.2012.09.029
29.
Sharma
,
R.
,
Ishak
,
A.
, and
Pop
,
I.
,
2014
, “
Stability Analysis of Magnetohydrodynamic Stagnation-Point Flow Toward a Stretching/Shrinking Sheet
,”
Comput. Fluids
,
102
, pp.
94
98
.10.1016/j.compfluid.2014.06.022
30.
Gad-el Hak
,
M.
,
2000
, “
Flow Control
,”
ASME J. Appl. Mech. Rev.
,
42
(
10
), pp.
261
293
.10.1115/1.3152376
31.
Liu
,
R.
, and
Liu
,
Q. S.
,
2011
, “
Non-Modal Instability in Plane Couette Flow of a Power-Law Fluid
,”
J. Fluid Mech.
,
676
, pp.
145
171
.10.1017/jfm.2011.36
32.
Schmid
,
P. J.
, and
Henningson
,
D. S.
,
2001
,
Stability and Transition in Shear Flows
,
Cambridge University Press, Springer
,
New York
.
33.
Antar
,
B. N.
, and
Benek
,
J. A.
,
1978
, “
Temporal Eigenvalue Spectrum of the Orr–Sommerfeld Equation for the Blasius Boundary Layer
,”
Phys. Fluids
,
21
(
2
), pp.
183
189
.10.1063/1.862212
34.
Mack
,
L. M.
,
1976
, “
A Numerical Study of the Temporal Eigenvalue Spectrum of the Blasius Boundary Layer
,”
J. Fluid Mech.
,
73
(
3
), pp.
497
520
.10.1017/S002211207600147X
35.
Schubauer
,
G. B.
, and
Skramstad
,
H. K.
,
1947
, “
Laminar Boundary-Layer Oscillations and Stability of Laminar Flow
,”
J. Aeronaut. Sci.
,
14
(
2
), pp.
69
78
.10.2514/8.1267
36.
Brattkus
,
K.
, and
Davis
,
S. H.
,
1988
, “
Flow Induced Morphological Instabilities: Stagnation-Point Flows
,”
J. Crystal Growth
,
89
(
4
), pp.
423
427
.10.1016/0022-0248(88)90202-3
37.
Cooper
,
A. J.
, and
Carpenter
,
P. W.
,
1997
, “
The Stability of Rotating-Disc Boundary-Layer Flow Over a Compliant Wall. Part 1. Type I and II Instabilities
,”
J. Fluid Mech.
,
350
, pp.
231
259
.10.1017/S0022112097006976
38.
Turky Ilmazoglu
,
M.
,
G
,
J.
, and
Ruban
,
A.
,
1999
, “
The Absolute Instability of Thin Wakes in an Incompressible/Compressible Dluid
,”
Theory Comput. Fluid Dyn.
,
13
(
2
), pp.
91
114
.10.1007/s001620050006
39.
Watanabe
,
T.
,
Pop
,
I.
, and
Goto
,
F.
,
1995
, “
MHD Stability of Boundary Layer Flow Over a Moving Flat Plate
,”
Tech. Mech.-Eur. J. Eng. Mech.
,
15
(
4
), pp.
325
332
.https://journals.ub.ovgu.de/index.php/techmech/article/view/1280
40.
Yuan
,
S. W.
,
1988
, “
Foundations of Fluid Mechanics
,”
Prentice of India
,
New Delhi
.
41.
Jordinson
,
R.
,
1970
, “
The Flat Plate Boundary Layer. Part 1. Numerical Integration of the Orr-Sommerfeld Equation
,”
J. Fluid Mech.
,
43
(
4
), pp.
801
811
.10.1017/S0022112070002756
42.
Theofilis
,
V.
,
1994
, “
The Discrete Temporal Eigenvalue Spectrum of the Generalised Hiemenz Flow as Solution of the Orr-Sommerfeld Equation
,”
J. Eng. Math.
,
28
(
3
), pp.
241
259
.10.1007/BF00058439
43.
Heeg
,
R. S.
,
Dijkstra
,
D.
, and
Zandbergen
,
P. J.
,
1999
, “
The Stability of Falkner-Skan Flows With Several Inflection Points
,”
Z. Angew. Math. Phys. ZAMP
,
50
(
1
), pp.
82
93
.10.1007/s000330050140
44.
Laouer
,
A.
,
Mezaache
,
E. H.
, and
Laouar
,
S.
,
2020
, “
Stability Analysis of MHD Fluid Flow Over a Moving Plate With Pressure Gradient Using the Chebyshev Spectral Method
,”
Int. J. Eng. Res. Africa
,
49
, pp.
29
38
.10.4028/www.scientific.net/JERA.49.29
45.
Zebib
,
A.
,
1984
, “
A Chebyshev Method for the Solution of Boundary Value Problems
,”
J. Comput. Phys.
,
53
(
3
), pp.
443
455
.10.1016/0021-9991(84)90070-6
46.
Grosch
,
C. E.
, and
Orszag
,
S. A.
,
1977
, “
Numerical Solution of Problems in Unbounded Regions: Coordinate Transforms
,”
J. Comput. Phys.
,
25
(
3
), pp.
273
295
.10.1016/0021-9991(77)90102-4
47.
Drazin
,
P. G.
, and
Reid
,
W. H.
,
2004
,
Hydrodynamic Stability
,
Cambridge University Press
,
Cambridge, UK
.
48.
Gaster
,
M.
,
1962
, “
A Note on the Relation Between Temporally-Increasing and Spatially-Increasing Disturbances in Hydrodynamic Stability
,”
J. Fluid Mech.
,
14
(
2
), pp.
222
224
.10.1017/S0022112062001184
49.
Monkewitz
,
P. A.
, and
Huerre
,
P.
,
1982
, “
Influence of the Velocity Ratio on the Spatial Instability of Mixing Layers
,”
Phys. Fluids
,
25
(
7
), pp.
1137
1143
.10.1063/1.863880
50.
Peltier
,
W. R.
, and
Scinocca
,
J. F.
,
1990
, “
The Origin of Severe Downslope Windstorm Pulsations
,”
J. Atmos. Sci.
,
47
(
24
), pp.
2853
2870
.10.1175/1520-0469(1990)047<2853:TOOSDW>2.0.CO;2
51.
Ortiz
,
S.
,
Jean-Marc
,
C.
, and
Thomas
,
L.
,
2002
, “
Spatial Holmboe Instability
,”
Phys. Fluids
,
14
(
8
), pp.
2585
2597
.10.1063/1.1485078
52.
Gelfgat
,
A. Y.
, and
Kit
,
E.
,
2006
, “
Spatial Versus Temporal Instabilities in a Parametrically Forced Stratified Mixing Layer
,”
J. Fluid Mech.
,
552
(
-1
), pp.
189
227
.10.1017/S0022112005008608
53.
Griffiths
,
P. T.
,
Stephen
,
S. O.
, and
Khan
,
M.
,
2021
, “
Stability of the Flow Due to a Linear Stretching Sheet
,”
Phys. Fluids
,
33
(
8
), p.
084106
.10.1063/5.0060645
54.
Canuto
,
C.
,
Hussaini
,
M. Y.
,
Quarteroni
,
A.
,
Thomas
,
J.
, and
Zang
,
J.
,
2012
,
Spectral Methods in Fluid Dynamics
,
Springer Science & Business Media
,
New York
.
55.
Chaudhary
,
I.
,
Garg
,
P.
,
Shankar
,
V.
, and
Subramanian
,
G.
,
2019
, “
Elasto-Inertial Wall Mode Instabilities in Viscoelastic Plane Poiseuille Flow
,”
J. Fluid Mech.
,
881
, pp.
119
163
.10.1017/jfm.2019.759
56.
Xie
,
M. L.
,
Xiong
,
H. B.
, and
Lin
,
J. Z.
,
2006
, “
Numerical Research on the Hydrodynamic Stability of Blasius Flow With Spectral Method
,”
J. Hydrodyn.
,
18
(
S1
), pp.
260
264
.10.1007/BF03400456
57.
Hatziavramidis
,
D.
, and
Hwar-Ching
,
K.
,
1985
, “
An Integral Chebyshev Expansion Method for Boundary-Value Problems of ODE Type
,”
Comput. Math. Appl.
,
11
(
6
), pp.
581
586
.10.1016/0898-1221(85)90040-9
58.
Kurtz
,
E. F.
, and
Crandall
,
S. H.
,
1962
, “
Computer-Aided Analysis of Hydrodynamic Stability
,”
J. Math. Phys.
,
41
(
1–4
), pp.
264
279
.10.1002/sapm1962411264
59.
Nield
,
D. A.
,
2003
, “
The Stability of Flow in a Channel or Duct Occupied by a Porous Medium
,”
Int. J. Heat Mass Transfer
,
46
(
22
), pp.
4351
4354
.10.1016/S0017-9310(03)00105-4
60.
Turky Ilmazoglu
,
M.
,
2023
, “
Uniform Magnetic Field Impact on Absolute Versus Convective Onset of Darcy–Benard Convection With Horizontal Throughflow
,”
Int. J. Numer. Methods Heat Fluid Flow
,
33
(
8
), pp.
3056
3070
.10.1108/HFF-04-2023-0213
61.
Morris
,
P. J.
,
1976
, “
The Spatial Viscous Instability of Axisymmetric Jets
,”
J. Fluid Mech.
,
77
(
3
), pp.
511
529
.10.1017/S0022112076002231
62.
Schlichting
,
H.
, and
Gerstern
,
K.
,
2004
,
Boundary-Layer Theory
, 8th ed.,
Springer-Verlag
,
New Delhi
.
You do not currently have access to this content.