Abstract

We present an advanced thermal solution for capillary-driven heat pipes that addresses a fundamental problem with existing heat pipes being inefficient space utilization and limited thermal spreading performance. Our solution features the full occupation of open-cell foam core and ultrathin-walled envelope—an ultrathin-walled foam heat pipe (uFHP). A copper layer is formed sequentially via electroless—and electroplating, and envelopes a tailored block of open-cell foam core, followed by a series of chemical surface treatments that create a nanoscale texture on the foam ligament and envelope's inner surfaces for improved capillary pumping. The high porosity foam core (ε = 0.974) for vapor passaging and wicking, and the ultrathin-walled envelope of 50 μm, make the uFHP remarkably lightweight (64% lighter than commercial heat pipes). Further, conductive spreading and convective transfer of heat from vapor and condensate by foam ligaments to the envelope, increase overall heat rejection. Consequently, the thermal resistance and evaporator temperature are reduced. More importantly, the uFHP could be tailored into any cross-sectional (e.g., noncircular) shape. This tailorable uFHP can be an alternative heat pipe thermal solution for extreme compact operations that require improved thermal performance.

References

1.
Faghri
,
A.
,
2012
, “
Review and Advances in Heat Pipe Science and Technology
,”
ASME J. Heat Transfer
,
134
(
12
), p.
123001
.10.1115/1.4007407
2.
Faghri
,
A.
,
2014
, “
Heat Pipes: Review, Opportunities and Challenges
,”
Front. Heat Pipes
,
5
(
1
), pp.
1
48
.10.5098/fhp.5.1
3.
Celsia
,
2023
, “
Types of Heat Pipes
,”
Celsia Inc.
,
Harbeson, DE
, accessed Apr. 24, 2024, https://celsiainc.com/heat-sink-blog/types-of-heat-pipes
4.
Leong
,
K. C.
,
Liu
,
C. Y.
, and
Lu
,
G. Q.
,
1997
, “
Characterization of Sintered Copper Wicks Used in Heat Pipes
,”
J. Porous Mater.
,
4
(
4
), pp.
303
308
.10.1023/A:1009685508557
5.
Kamotani
,
Y.
,
1976
, “
Analysis of Axially Grooved Heat Pipe Condensers
,”
14th Aerospace Sciences Meeting
,
Washington, DC
, Jan. 26–28.10.2514/6.1976-147
6.
Morooka
,
S.
,
Kuroki
,
T.
, and
Waki
,
T.
,
1981
, “
Study on the Heat Pipe. III—Heat Transfer Mechanism in the Evaporator of Heat Pipe With Screen Mesh Wick
,”
Bull. JSME
,
24
(
196
), pp.
1811
1819
.10.1299/jsme1958.24.1811
7.
Semenic
,
T.
, and
Catton
,
I.
,
2009
, “
Experimental Study of Biporous Wicks for High Heat Flux Applications
,”
Int. J. Heat Mass Transfer
,
52
(
21–22
), pp.
5113
5121
.10.1016/j.ijheatmasstransfer.2009.05.005
8.
Chan
,
C. W.
,
Siqueiros
,
E.
,
Ling-Chin
,
J.
,
Royapoor
,
M.
, and
Roskilly
,
A. P.
,
2015
, “
Heat Utilisation Technologies: A Critical Review of Heat Pipes
,”
Renew Sust. Energ. Rev.
,
50
, pp.
615
627
.10.1016/j.rser.2015.05.028
9.
Tang
,
H.
,
Lian
,
L.
,
Zhang
,
J.
, and
Liu
,
Y.
,
2019
, “
Heat Transfer Performance of Cylindrical Heat Pipes With Axially Graded Wick at Anti-Gravity Orientations
,”
Appl. Therm. Eng.
,
163
, p.
114413
.10.1016/j.applthermaleng.2019.114413
10.
Li
,
Y.
,
Chen
,
S.
,
He
,
B.
,
Yan
,
Y.
, and
Li
,
B.
,
2016
, “
Effects of Vacuuming Process Parameters on the Thermal Performance of Composite Heat Pipes
,”
Appl. Therm. Eng.
,
99
, pp.
32
41
.10.1016/j.applthermaleng.2016.01.035
11.
Chen
,
B. B.
,
Liu
,
W.
,
Liu
,
Z. C.
,
Li
,
H.
, and
Yang
,
J. G.
,
2012
, “
Experimental Investigation of Loop Heat Pipe With Flat Evaporator Using Biporous Wick
,”
Appl. Therm. Eng.
,
42
, pp.
34
40
.10.1016/j.applthermaleng.2012.03.006
12.
Wu
,
S. C.
,
Wang
,
D.
,
Lin
,
W. J.
, and
Chen
,
Y. M.
,
2015
, “
Investigating the Effect of Powder-Mixing Parameter in Biporous Wick Manufacturing on Enhancement of Loop Heat Pipe Performance
,”
Int. J. Heat Mass Transfer
,
89
, pp.
460
467
.10.1016/j.ijheatmasstransfer.2015.05.074
13.
Han
,
X. H.
,
Wang
,
Q.
,
Park
,
Y. G.
,
T'Joen
,
C.
,
Sommers
,
A.
, and
Jacobi
,
A.
,
2012
, “
A Review of Metal Foam and Metal Matrix Composites for Heat Exchangers and Heat Sinks
,”
Heat Transfer Eng.
,
33
(
12
), pp.
991
1009
.10.1080/01457632.2012.659613
14.
Zhou
,
W.
,
Ling
,
W.
,
Duan
,
L.
,
Hui
,
K. S.
, and
Hui
,
K. N.
,
2016
, “
Development and Tests of Loop Heat Pipe With Multi-Layer Metal Foams as Wick Structure
,”
Appl. Therm. Eng.
,
94
, pp.
324
330
.10.1016/j.applthermaleng.2015.10.085
15.
Tang
,
Y.
,
Tang
,
H.
,
Li
,
J.
,
Zhang
,
S.
,
Zhuang
,
B.
, and
Sun
,
Y.
,
2017
, “
Experimental Investigation of Capillary Force in a Novel Sintered Copper Mesh Wick for Ultra-Thin Heat Pipes
,”
Appl. Therm. Eng.
,
115
, pp.
1020
1030
.10.1016/j.applthermaleng.2016.12.056
16.
Jiang
,
L. L.
,
Tang
,
Y.
,
Zhou
,
W.
,
Jiang
,
L. Z.
,
Xiao
,
T.
,
Yan
,
L.
, and
Gao
,
J. W.
,
2014
, “
Design and Fabrication of Sintered Wick for Miniature Cylindrical Heat Pipe
,”
Trans. Nonferrous Met. Soc. China
,
24
(
1
), pp.
292
301
.10.1016/S1003-6326(14)63060-0
17.
Tang
,
H.
,
Tang
,
Y.
,
Wan
,
Z.
,
Li
,
J.
,
Yuan
,
W.
,
Lu
,
L.
,
Li
,
Y.
, and
Tang
,
K.
,
2018
, “
Review of Applications and Developments of Ultra-Thin Micro Heat Pipes for Electronic Cooling
,”
Appl. Energy
,
223
, pp.
383
400
.10.1016/j.apenergy.2018.04.072
18.
Cui
,
Z.
,
Jia
,
L.
,
Wang
,
Z.
,
Dang
,
C.
, and
Yin
,
L.
,
2022
, “
Thermal Performance of an Ultra-Thin Flat Heat Pipe With Striped Super-Hydrophilic Wick Structure
,”
Appl. Therm. Eng.
,
208
, p.
118249
.10.1016/j.applthermaleng.2022.118249
19.
Li
,
J.
, and
Lv
,
L.
,
2016
, “
Experimental Studies on a Novel Thin Flat Heat Pipe Heat Spreader
,”
Appl. Therm. Eng.
,
93
, pp.
139
146
.10.1016/j.applthermaleng.2015.09.038
20.
Phillips
,
E. C.
, “
Low-Temperature Heat Pipe Research Program
,”
NTRS
,
Santa Monica, CA
, Paper No.
NAS1-8000
.https://ntrs.nasa.gov/api/citations/19690020461/downloads/19690020461.pdf
21.
Carbajal
,
G.
,
Sobhan
,
C. B.
,
Peterson
,
G. P.
,
Queheillalt
,
D. T.
, and
Wadley
,
H. N. G.
,
2006
, “
Thermal Response of a Flat Heat Pipe Sandwich Structure to a Localized Heat Flux
,”
Int. J. Heat Mass Transfer
,
49
(
21–22
), pp.
4070
4081
.10.1016/j.ijheatmasstransfer.2006.03.035
22.
Queheillalt
,
D. T.
,
Carbajal
,
G.
,
Peterson
,
G. P.
, and
Wadley
,
H. N. G.
,
2008
, “
A Multifunctional Heat Pipe Sandwich Panel Structure
,”
Int. J. Heat Mass Transfer
,
51
(
1–2
), pp.
312
326
.10.1016/j.ijheatmasstransfer.2007.03.051
23.
Hansen
,
G.
, and
Næss
,
E.
,
2015
, “
Performance of Compressed Nickel Foam Wicks for Flat Vertical Heat Pipes
,”
Appl. Therm. Eng.
,
81
, pp.
359
367
.10.1016/j.applthermaleng.2015.02.040
24.
Dhanabal
,
S.
,
Annamalai
,
M.
, and
Muthusamy
,
K.
,
2017
, “
Experimental Investigation of Thermal Performance of Metal Foam Wicked Flat Heat Pipe
,”
Exp. Therm. Fluid Sci.
,
82
, pp.
482
492
.10.1016/j.expthermflusci.2016.12.006
25.
Shirazy
,
M. R. S.
, and
Fréchette
,
L. G.
,
2010
, “
A Parametric Investigation of Operating Limits in Heat Pipes Using Novel Metal Foams as Wicks
,”
Eighth International Conference on Nanochannels, Microchannels, and Minichannels
, ASME Paper No. FEDSM-ICNMM2010-31268.10.1115/FEDSM-ICNMM2010-31268
26.
Shirazy
,
M. R. S.
, and
Fréchette
,
L. G.
,
2013
, “
Capillary and Wetting Properties of Copper Metal Foams in the Presence of Evaporation and Sintered Walls
,”
Int. J. Heat Mass Transfer
,
58
(
1–2
), pp.
282
291
.10.1016/j.ijheatmasstransfer.2012.11.031
27.
Tang
,
H.
,
Xie
,
Y.
,
Xia
,
L.
,
Tang
,
Y.
, and
Sun
,
Y.
,
2023
, “
Review on the Fabrication of Surface Functional Structures for Enhancing Heat Transfer of Heat Pipes
,”
Appl. Therm. Eng.
,
226
, p.
120337
.10.1016/j.applthermaleng.2023.120337
28.
Nam
,
Y.
, and
Ju
,
Y. S.
,
2013
, “
A Comparative Study of the Morphology and Wetting Characteristics of Micro/Nanostructured Cu Surfaces for Phase Change Heat Transfer Applications
,”
J. Adhes. Sci. Technol.
,
27
(
20
), pp.
2163
2176
.10.1080/01694243.2012.697783
29.
Shum
,
C.
,
Rosengarten
,
G.
, and
Zhu
,
Y.
,
2017
, “
Enhancing Wicking Microflows in Metallic Foams
,”
Microfluid. Nanofluid.
,
21
(
12
), p.
177
.10.1007/s10404-017-2018-0
30.
Yang
,
H.
,
Yang
,
Y.
,
Ma
,
B.
, and
Zhu
,
Y.
,
2022
, “
Experimental Study on Capillary Microflows in High Porosity Open-Cell Metal Foams
,”
Micromachines
,
13
(
12
), p.
2052
.10.3390/mi13122052
31.
Yang
,
X. H.
,
Kuang
,
J. J.
,
Lu
,
T. J.
,
Han
,
F. S.
, and
Kim
,
T.
,
2013
, “
A Simplistic Analytical Unit Cell-Based Model for the Effective Thermal Conductivity of High Porosity Open-Cell Metal Foams
,”
J. Phys. D: Appl. Phys.
,
46
(
25
), p.
255302
.10.1088/0022-3727/46/25/255302
32.
Klostermann
,
J.
,
Schwarze
,
R.
, and
Brücker
,
C.
,
2013
, “
Meshing of Porous Foam Structures on the Micro-Scale
,”
Eng. Comput.
,
29
(
1
), pp.
95
110
.10.1007/s00366-011-0247-5
33.
Min
,
J.
,
Wu
,
X.
,
Shen
,
L.
, and
Gao
,
F.
,
2011
, “
Hydrophilic Treatment and Performance of Copper Finned Tube Evaporators
,”
Appl. Therm. Eng.
, 31(14–15), pp. 2936–2942.10.1016/j.applthermaleng.2011.05.024
34.
Zohuri
,
B.
,
2011
, “
Heat Pipe Theory and Modeling
,”
Heat Pipe Design and Technology
,
CRC Press
,
Boca Raton, FL
, pp.
144
151
.
35.
Youn
,
Y. J.
, and
Kim
,
S. J.
,
2012
, “
Fabrication and Evaluation of a Silicon-Based Micro Pulsating Heat Spreader
,”
Sensor Actuat. A: Phys.
,
174
, pp.
189
197
.10.1016/j.sna.2011.12.006
36.
Tang
,
Y.
,
Deng
,
D.
,
Lu
,
L.
,
Pan
,
M.
, and
Wang
,
Q.
,
2010
, “
Experimental Investigation on Capillary Force of Composite Wick Structure by IR Thermal Imaging Camera
,”
Exp. Therm. Fluid Sci.
,
34
(
2
), pp.
190
196
.10.1016/j.expthermflusci.2009.10.016
37.
Coleman
,
H. W.
, and
Steele
,
W. G.
,
2018
, “
Uncertainty in a Result Determined From Multiple Variables
,”
Experimentation, Validation, and Uncertainty Analysis for Engineers
,
Wiley
,
Hoboken, NJ
.
38.
Li
,
H.
,
Fang
,
X.
,
Li
,
G.
,
Zhou
,
G.
, and
Tang
,
Y.
,
2018
, “
Investigation on Fabrication and Capillary Performance of Multi-Scale Composite Porous Wick Made by Alloying-Dealloying Method
,”
Int. J. Heat Mass Transfer
,
127
, pp.
145
153
.10.1016/j.ijheatmasstransfer.2018.06.132
39.
Khayargoli
,
P.
,
Loya
,
V.
,
Lefebvre
,
L. P.
, and
Medraj
,
M.
,
2004
, “
The Impact of Microstructure on the Permeability of Metal Foams
,”
CSME 2004 Forum
, London, ON, Canada, pp.
220
228
.https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=3013fe3d9dfdf10dbda82d67f06c32222ca12a2f#:~:text=Generally%20speaking%2C%20the%20permeability%2C%20K,drop%20depends%20on%20solid%20fraction.
40.
Bhattacharya
,
A.
,
Calmidi
,
V. V.
, and
Mahajan
,
R. L.
,
2002
, “
Thermophysical Properties of High Porosity Metal Foams
,”
Int. J. Heat Mass Transfer
,
45
(
5
), pp.
1017
1031
.10.1016/S0017-9310(01)00220-4
41.
Majumdar
,
A.
, and
Bhushan
,
B.
,
1990
, “
Role of Fractal Geometry in Roughness Characterization and Contact Mechanics of Surfaces
,”
ASME J. Tribol.
,
112
(
2
), pp.
205
216
.10.1115/1.2920243
42.
Plessis
,
P. D.
,
Montillet
,
A.
,
Comiti
,
J.
, and
Legrand
,
J.
,
1994
, “
Pressure Drop Prediction for Flow Through High Porosity Metallic Foams
,”
Chem. Eng. Sci.
,
49
(
21
), pp.
3545
3553
.10.1016/0009-2509(94)00170-7
43.
Garrido
,
G. I.
,
Patcas
,
F. C.
,
Lang
,
S.
, and
Kraushaar-Czarnetzki
,
B.
,
2008
, “
Mass Transfer and Pressure Drop in Ceramic Foams: A Description for Different Pore Sizes and Porosities
,”
Chem. Eng. Sci.
,
63
(
21
), pp.
5202
5217
.10.1016/j.ces.2008.06.015
44.
Hwang
,
J. J.
,
Hwang
,
G. J.
,
Yeh
,
R. H.
, and
Chao
,
C. H.
,
2002
, “
Measurement of Interstitial Convective Heat Transfer and Frictional Drag for Flow Across Metal Foams
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
124
(
1
), pp.
120
129
.10.1115/1.1416690
45.
Mancin
,
S.
,
Zilio
,
C.
,
Rossetto
,
L.
, and
Cavallini
,
A.
,
2011
, “
Foam Height Effects on Heat Transfer Performance of 20 ppi Aluminum Foams
,”
Appl. Therm. Eng.
,
49
, pp.
55
60
.10.1016/j.applthermaleng.2011.05.015
46.
Zafari
,
M.
,
Panjepour
,
M.
,
Meratian
,
M.
, and
Emami
,
M. D.
,
2016
, “
CFD Simulation of Forced Convective Heat Transfer by Tetrakaidecahedron Model in Metal Foams
,”
J. Porous Media
,
19
(
1
), pp.
1
11
.10.1615/JPorMedia.v19.i1.10
47.
Wu
,
Z.
,
Caliot
,
C.
,
Bai
,
F.
,
Flamant
,
G.
,
Wang
,
Z.
,
Zhang
,
J.
, and
Tian
,
C.
,
2010
, “
Experimental and Numerical Studies of the Pressure Drop in Ceramic Foams for Volumetric Solar Receiver Applications
,”
Appl. Energy
,
87
(
2
), pp.
504
513
.10.1016/j.apenergy.2009.08.009
48.
Fries
,
N.
, and
Dreyer
,
M.
,
2008
, “
An Analytic Solution of Capillary Rise Restrained by Gravity
,”
J. Colloid Interface Sci.
,
320
(
1
), pp.
259
263
.10.1016/j.jcis.2008.01.009
49.
Maziuk
,
V.
,
Kulakov
,
A.
,
Rabetsky
,
M.
,
Vasiliev
,
L.
, and
Vukovic
,
M.
,
2001
, “
Miniature Heat-Pipe Thermal Performance Prediction Tool – Software Development
,”
Appl. Therm. Eng.
,
21
(
5
), pp.
559
571
.10.1016/S1359-4311(00)00066-1
50.
Park
,
K.
,
Lee
,
W.
,
Lee
,
K.
,
Baek
,
I.
,
Rhi
,
S.
, and
Shin
,
D.
,
2005
, “
Study on the Operating Characteristics in Small Size Heat Pipe Using Nanofluids
,”
Proceedings of the Third IASME/WSEAS International Conference on Heat Transfer, Thermal Engineering and Environment
, Corfu, Greece, Aug. 20–25, pp.
106
109
.
51.
Wong
,
S.
,
Hsu
,
Z.
, and
Hsu
,
L.
,
2017
, “
On the Test Setting at Condenser in Thermal Performance Tests of Heat Pipes
,” ASME Paper No. FEDSM2017-69517.10.1115/FEDSM2017-69517
52.
Mahdavi
,
M.
,
Tiari
,
S.
,
Schampheleire
,
S. D.
, and
Qiu
,
S.
,
2018
, “
Experimental Study of the Thermal Characteristics of a Heat Pipe
,”
Exp. Therm Fluid Sci.
,
93
, pp.
292
304
.10.1016/j.expthermflusci.2018.01.003
You do not currently have access to this content.