Abstract

An ultra-thin vapor chamber (VC) with the composite wick formed by four spiral woven meshes (SWMs) and a copper mesh was proposed to solve the heat dissipation problem in miniaturized electronic equipment because of its sufficient heat transfer capability under limited thickness. However, the influence factors on the thermal performance of the VC with composite wick are more than that of the VC with a single type of wick. In this study, in order to investigate the thermal performance of the VC with composite wick, a theoretical model was developed to calculate the maximum heat transfer capacity. Besides, a three-dimensional numerical model for the heat transfer characteristics was established, and the simulation results have a good match with the experimental results. The orthogonal test method was adopted to determine that both the width of the vapor channel (wv) and the thickness of the vapor channel (tv) have a significant effect on the maximum heat transfer capacity and thermal resistance, while the porosity of the mesh (εmesh) has a prominent effect on the maximum heat transfer capacity, but has little effect on the thermal resistance. Further optimization of the sensitive factors for VC heat transfer performance was achieved to enhance the maximum heat transfer capacity.

References

1.
Abo-Zahhad
,
E.
,
Amine Hachicha
,
A.
,
Said
,
Z.
,
Ghenai
,
C.
, and
Ookawara
,
S.
,
2022
, “
Thermal Management System for High, Dense, and Compact Power Electronics
,”
Energy Convers. Manage.
,
268
, p.
115975
.10.1016/j.enconman.2022.115975
2.
Luo
,
Y.
,
Tang
,
Y.
,
Zhang
,
X.
,
Wang
,
H.
,
Zhou
,
G.
, and
Bai
,
P.
,
2022
, “
A Novel Composite Vapor Chamber for Battery Thermal Management System
,”
Energy Convers. Manage.
,
254
, p.
115293
.10.1016/j.enconman.2022.115293
3.
Zhou
,
W.
,
Li
,
Y.
,
Chen
,
Z.
,
Deng
,
L.
, and
Gan
,
Y.
,
2019
, “
Effect of the Passage Area Ratio of Liquid to Vapor on an Ultra-Thin Flattened Heat Pipe
,”
Appl. Therm. Eng.
,
162
, p.
114215
.10.1016/j.applthermaleng.2019.114215
4.
Wu
,
G.
,
Luo
,
Y.
,
Bai
,
P.
,
Wang
,
H.
,
Cai
,
R.
,
Tang
,
Y.
,
Chen
,
X.
, and
Zhou
,
G.
,
2021
, “
Modeling and Experimental Analysis of an Internally-Cooled Vapor Chamber
,”
Energy Convers. Manage.
,
235
, p.
114017
.10.1016/j.enconman.2021.114017
5.
Sohel Murshed
,
S. M.
, and
Nieto de Castro
,
C. A.
,
2017
, “
A Critical Review of Traditional and Emerging Techniques and Fluids for Electronics Cooling
,”
Renewable Sustainable Energy Rev.
,
78
, pp.
821
833
.10.1016/j.rser.2017.04.112
6.
Chen
,
X.
,
Ye
,
H.
,
Fan
,
X.
,
Ren
,
T.
, and
Zhang
,
G.
,
2016
, “
A Review of Small Heat Pipes for Electronics
,”
Appl. Therm. Eng.
,
96
, pp.
1
17
.10.1016/j.applthermaleng.2015.11.048
7.
Tang
,
H.
,
Tang
,
Y.
,
Wan
,
Z.
,
Li
,
J.
,
Yuan
,
W.
,
Lu
,
L.
,
Li
,
Y.
, and
Tang
,
K.
,
2018
, “
Review of Applications and Developments of Ultra-Thin Micro Heat Pipes for Electronic Cooling
,”
Appl. Energy
,
223
, pp.
383
400
.10.1016/j.apenergy.2018.04.072
8.
Zhou
,
W.
,
Li
,
Y.
,
Chen
,
Z.
,
Deng
,
L.
, and
Gan
,
Y.
,
2020
, “
Ultra-Thin Flattened Heat Pipe With a Novel Band-Shape Spiral Woven Mesh Wick for Cooling Smartphones
,”
Int. J. Heat Mass Transfer
,
146
, p.
118792
.10.1016/j.ijheatmasstransfer.2019.118792
9.
Koito
,
Y.
,
Imura
,
H.
,
Mochizuki
,
M.
,
Saito
,
Y.
, and
Torii
,
S.
,
2006
, “
Numerical Analysis and Experimental Verification on Thermal Fluid Phenomena in a Vapor Chamber
,”
Appl. Therm. Eng.
,
26
(
14–15
), pp.
1669
1676
.10.1016/j.applthermaleng.2005.11.012
10.
Huang
,
G.
,
Liu
,
W.
,
Luo
,
Y.
,
Deng
,
T.
,
Li
,
Y.
, and
Chen
,
H.
,
2020
, “
Research and Optimization Design of Limited Internal Cavity of Ultra-Thin Vapor Chamber
,”
Int. J. Heat Mass Transfer
,
148
, p.
119101
.10.1016/j.ijheatmasstransfer.2019.119101
11.
Zhang
,
C.
,
Hong
,
F.
, and
Cheng
,
P.
,
2015
, “
Simulation of Liquid Thin Film Evaporation and Boiling on a Heated Hydrophilic Microstructured Surface by Lattice Boltzmann Method
,”
Int. J. Heat Mass Transfer
,
86
, pp.
629
638
.10.1016/j.ijheatmasstransfer.2015.03.029
12.
Chen
,
Z.
,
Li
,
Y.
,
Yu
,
J.
,
Deng
,
L.
,
Chen
,
H.
, and
Tang
,
X.
,
2022
, “
Fabrication and Characterization of Ultra-Thin Vapour Chambers With Printed Copper Powder Wick
,”
Appl. Therm. Eng.
,
201
, p.
117734
.10.1016/j.applthermaleng.2021.117734
13.
Yan
,
W.
,
Yang
,
X.
,
Liu
,
T.
, and
Wang
,
S.
,
2023
, “
Numerical Simulation of Heat Transfer Performance for Ultra-Thin Flat Heat Pipe
,”
J. Therm. Sci.
,
32
(
2
), pp.
643
649
.10.1007/s11630-023-1768-0
14.
Liu
,
Z.
, and
Zhu
,
Q.
,
2011
, “
Application of Aqueous Nanofluids in a Horizontal Mesh Heat Pipe
,”
Energy Convers. Manage.
,
52
(
1
), pp.
292
300
.10.1016/j.enconman.2010.07.001
15.
Solomon
,
A. B.
,
Ramachandran
,
K.
,
Asirvatham
,
L. G.
, and
Pillai
,
B. C.
,
2014
, “
Numerical Analysis of a Screen Mesh Wick Heat Pipe With Cu/Water Nanofluid
,”
Int. J. Heat Mass Transfer
,
75
, pp.
523
533
.10.1016/j.ijheatmasstransfer.2014.04.007
16.
Li
,
J.
,
Lv
,
L.
,
Zhou
,
G.
, and
Li
,
X.
,
2019
, “
Mechanism of a Microscale Flat Plate Heat Pipe With Extremely High Nominal Thermal Conductivity for Cooling High-End Smartphone Chips
,”
Energy Convers. Manage.
,
201
, p.
112202
.10.1016/j.enconman.2019.112202
17.
Somasundaram
,
D.
,
Mani
,
A.
, and
Kamaraj
,
M.
,
2017
, “
Experimental Investigation of Thermal Performance of Metal Foam Wicked Flat Heat Pipe
,”
Exp. Therm. Fluid Sci.
,
82
, pp.
482
492
.10.1016/j.expthermflusci.2016.12.006
18.
Brahim
,
T.
, and
Jemni
,
A.
,
2021
, “
CFD Analysis of Hotspots Copper Metal Foam Flat Heat Pipe for Electronic Cooling Applications
,”
Int. J. Therm. Sci.
,
159
, p.
106583
.10.1016/j.ijthermalsci.2020.106583
19.
Yang
,
K.
,
Tu
,
C.
,
Zhang
,
W.
,
Yeh
,
C.
, and
Wang
,
C.
,
2017
, “
A Novel Oxidized Composite Braided Wires Wick Structure Applicable for Ultra-Thin Flattened Heat Pipes
,”
Int. Commun. Heat Mass Transfer
,
88
, pp.
84
90
.10.1016/j.icheatmasstransfer.2017.08.014
20.
Huang
,
G.
,
Liu
,
W.
,
Luo
,
Y.
,
Li
,
Y.
, and
Chen
,
H.
,
2021
, “
A New Ultra-Thin Vapor Chamber With Composite Wick for Thin Electronic Products
,”
Int. J. Therm. Sci.
,
170
, p.
107145
.10.1016/j.ijthermalsci.2021.107145
21.
Huang
,
G.
,
Liu
,
W.
,
Luo
,
Y.
,
Li
,
Y.
, and
Chen
,
H.
,
2021
, “
Fabrication and Capillary Performance of a Novel Composite Wick for Ultra-Thin Heat Pipes
,”
Int. J. Heat Mass Transfer
,
176
, p.
121467
.10.1016/j.ijheatmasstransfer.2021.121467
22.
Tang
,
Y.
,
Hong
,
S.
,
Wang
,
S.
, and
Deng
,
D.
,
2019
, “
Experimental Study on Thermal Performances of Ultra-Thin Flattened Heat Pipes
,”
Int. J. Heat Mass Transfer
,
134
, pp.
884
894
.10.1016/j.ijheatmasstransfer.2018.12.178
23.
Lee
,
D.
, and
Byon
,
C.
,
2018
, “
Fabrication and Characterization of Pure-Metal-Based Submillimeter-Thick Flexible Flat Heat Pipe With Innovative Wick Structures
,”
Int. J. Heat Mass Transfer
,
122
, pp.
306
314
.10.1016/j.ijheatmasstransfer.2018.01.135
24.
Tang
,
Y.
,
Tang
,
H.
,
Li
,
J.
,
Zhang
,
S.
,
Zhuang
,
B.
, and
Sun
,
Y.
,
2017
, “
Experimental Investigation of Capillary Force in a Novel Sintered Copper Mesh Wick for Ultra-Thin Heat Pipes
,”
Appl. Therm. Eng.
,
115
, pp.
1020
1030
.10.1016/j.applthermaleng.2016.12.056
25.
Ding
,
C.
,
Soni
,
G.
,
Bozorgi
,
P.
,
Piorek
,
B.
,
Meinhart
,
C.
, and
MacDonald
,
N.
,
2010
, “
A Flat Heat Pipe Architecture Based on Nanostructured Titania
,”
J. Microelectromech. Syst.
,
19
(
4
), pp.
878
884
.10.1109/JMEMS.2010.2051019
26.
Huang
,
J.
,
Zhou
,
W.
,
Xiang
,
J.
,
Liu
,
C.
,
Gao
,
Y.
,
Li
,
S.
, and
Ling
,
W.
,
2020
, “
Development of Novel Flexible Heat Pipe With Multistage Design Inspired by Structure of Human Spine
,”
Appl. Therm. Eng.
,
175
, p.
115392
.10.1016/j.applthermaleng.2020.115392
27.
Wang
,
Q.
,
Zhao
,
H.
,
Xu
,
Z.
,
Li
,
J.
,
Deng
,
D.
, and
Wang
,
Y.
,
2020
, “
Influence of Groove Parameters on the Thermal Hydraulic Performance of a Composite Porous Vapor Chamber: A Numerical Study
,”
Appl. Therm. Eng.
,
172
, p.
115149
.10.1016/j.applthermaleng.2020.115149
28.
Lurie
,
S.
,
Rabinskiy
,
L.
, and
Solyaev
,
Y.
,
2019
, “
Topology Optimization of the Wick Geometry in a Flat Plate Heat Pipe
,”
Int. J. Heat Mass Transfer
,
128
, pp.
239
247
.10.1016/j.ijheatmasstransfer.2018.08.125
29.
Yu
,
J.
,
Li
,
Y.
,
Chen
,
Z.
,
Luo
,
Q.
,
Chen
,
H.
, and
Tang
,
X.
,
2021
, “
Effect of the Passage Area Ratio of Wick on an Ultra-Thin Vapour Chamber With a Spiral Woven Mesh Wick
,”
Appl. Therm. Eng.
,
196
, p.
117282
.10.1016/j.applthermaleng.2021.117282
30.
Muneeshwaran
,
M.
,
Lin
,
Y.
,
Lin
,
L.
,
Lin
,
V.
, and
Wang
,
C.
,
2022
, “
A Parametric Study on the Performance of Vapor Chamber in Association With Pillar Distribution
,”
Appl. Therm. Eng.
,
207
, p.
118217
.10.1016/j.applthermaleng.2022.118217
31.
Huang
,
Z.
,
Li
,
D.
,
Zhao
,
J.
, and
Jian
,
Q.
,
2022
, “
Thermal and Hydraulic Analysis of Ultra-Thin Vapor Chamber With Copper Columns Considering Marangoni Effect
,”
Int. J. Heat Mass Transfer
,
184
, p.
122343
.10.1016/j.ijheatmasstransfer.2021.122343
32.
Yu
,
J.
,
Li
,
Y.
,
Xin
,
Z.
,
Chen
,
Z.
,
Deng
,
L.
,
Guo
,
X.
,
Chen
,
H.
, and
He
,
H.
,
2022
, “
Experimental Investigation on the Thermal Characteristics of Ultrathin Vapour Chamber With in-Plane Bending
,”
Appl. Therm. Eng.
,
217
, p.
119175
.10.1016/j.applthermaleng.2022.119175
33.
Li
,
Y.
,
Zhou
,
W.
,
He
,
J.
,
Yan
,
Y.
,
Li
,
B.
, and
Zeng
,
Z.
,
2016
, “
Thermal Performance of Ultra-Thin Flattened Heat Pipes With Composite Wick Structure
,”
Appl. Therm. Eng.
,
102
, pp.
487
499
.10.1016/j.applthermaleng.2016.03.097
34.
Zhou
,
W.
,
Xie
,
P.
,
Li
,
Y.
,
Yan
,
Y.
, and
Li
,
B.
,
2017
, “
Thermal Performance of Ultra-Thin Flattened Heat Pipes
,”
Appl. Therm. Eng.
,
117
, pp.
773
781
.10.1016/j.applthermaleng.2017.01.089
35.
Velardo
,
J.
,
Date
,
A.
,
Singh
,
R.
,
Nihill
,
J.
,
Date
,
A.
,
Phan
,
T. L.
, and
Takahashi
,
M.
,
2019
, “
Experimental Investigation of a Vapour Chamber Heat Spreader With Hybrid Wick Structure
,”
Int. J. Therm. Sci.
,
140
, pp.
28
35
.10.1016/j.ijthermalsci.2019.02.009
36.
Yan
,
C.
,
Li
,
H.
,
Tang
,
Y.
,
Ding
,
X.
,
Yuan
,
X.
,
Liang
,
Y.
, and
Zhang
,
S.
,
2023
, “
A Novel Ultra-Thin Vapor Chamber With Composite Wick for Portable Electronics Cooling
,”
Appl. Therm. Eng.
,
226
, p.
120340
.10.1016/j.applthermaleng.2023.120340
37.
Huang
,
G.
,
Liu
,
W.
,
Luo
,
Y.
, and
Li
,
Y.
,
2020
, “
A Novel Ultra-Thin Vapor Chamber for Heat Dissipation in Ultra-Thin Portable Electronic Devices
,”
Appl. Therm. Eng.
,
167
, p.
114726
.10.1016/j.applthermaleng.2019.114726
38.
Zhang
,
T.
,
Yan
,
Z.
,
Xiao
,
L.
,
Fu
,
H.
,
Pei
,
G.
, and
Ji
,
J.
,
2019
, “
Experimental, Study and Design Sensitivity Analysis of a Heat Pipe Photovoltaic/Thermal System
,”
Appl. Therm. Eng.
,
162
, p.
114318
.10.1016/j.applthermaleng.2019.114318
39.
Milani Shirvan
,
K.
,
Mirzakhanlari
,
S.
,
Kalogirou
,
S. A.
,
Öztop
,
H. F.
, and
Mamourian
,
M.
,
2017
, “
Heat Transfer and Sensitivity Analysis in a Double Pipe Heat Exchanger Filled With Porous Medium
,”
Int. J. Therm. Sci.
,
121
, pp.
124
137
.10.1016/j.ijthermalsci.2017.07.008
40.
Zhou
,
W.
,
Li
,
Y.
,
Chen
,
Z.
,
Deng
,
L.
, and
Gan
,
Y.
,
2019
, “
A Novel Ultra-Thin Flattened Heat Pipe With Biporous Spiral Woven Mesh Wick for Cooling Electronic Devices
,”
Energy Convers. Manage.
,
180
, pp.
769
783
.10.1016/j.enconman.2018.11.031
41.
Imura
,
H.
,
Kozai
,
H.
, and
Ikeda
,
Y.
,
1994
, “
The Effective Pore Radius of Screen Wicks
,”
Heat Transfer Eng.
,
15
(
4
), pp.
24
32
.10.1080/01457639408939834
42.
Yuan
,
Z.
,
Chen
,
X.
,
Zeng
,
H.
,
Wang
,
K.
, and
Qiu
,
J.
,
2018
, “
Identification of the Elastic Constant Values for Numerical Simulation of High Velocity Impact on Dyneema® Woven Fabrics Using Orthogonal Experiments
,”
Compos. Struct.
,
204
, pp.
178
191
.10.1016/j.compstruct.2018.07.024
43.
Prasher
,
R. S.
,
2003
, “
A Simplified Conduction Based Modeling Scheme for Design Sensitivity Study of Thermal Solution Utilizing Heat Pipe and Vapor Chamber Technology
,”
ASME Electron Packag.
,
125
(
3
), pp.
378
385
.10.1115/1.1602479
44.
Wang
,
J.
,
Gan
,
Y.
,
Liang
,
J.
,
Tan
,
M.
, and
Li
,
Y.
,
2019
, “
Sensitivity Analysis of Factors Influencing a Heat Pipe-Based Thermal Management System for a Battery Module With Cylindrical Cells
,”
Appl. Therm. Eng.
,
151
, pp.
475
485
.10.1016/j.applthermaleng.2019.02.036
45.
Huang
,
Z.
,
Tang
,
X.
,
Luo
,
Q.
,
Gan
,
Y.
,
Liang
,
J.
,
Li
,
R.
,
Xiong
,
T.
,
Liu
,
J.
,
Ma
,
L.
,
Dong
,
D.
, and
Li
,
Y.
,
2021
, “
Numerical Analysis on Heat Transfer Characteristics of a Multi-Vapor Channel Vapor Chamber With Novel Ultra-Thin Composite Wick
,”
Case Stud. Therm. Eng.
,
26
, p.
101035
.10.1016/j.csite.2021.101035
You do not currently have access to this content.