Abstract

A linear stability analysis of Rayleigh–Bénard convection in a Newtonian nanofluid is carried out using most general boundary conditions. A single-phase description of nanofluids is adopted in the study. The nanofluids used for the study are water–alumina and water–copper nanofluids in order to analyze how a choice between them can be made. The values of thermophysical quantities of nanofluids are calculated using the mixture theory and phenomenological-laws. The paper applies the Maclaurin series in solving the boundary-eigenvalue-problem through a simple and innovative approach. A single-term Galerkin technique is adopted to obtain the guess value of the critical Rayleigh number and the wave number. Further, improved values of the Rayleigh number and the wave number are obtained using the solution of a system of three linear-algebraic equations. A detailed discussion is made on the effect of rough-boundaries and Robin-boundary conditions for temperature on the onset of convection. A comparative study between the results of two nanofluids is made and the destabilizing effect of nanoparticles in the Newtonian carrier-fluid on the onset of convection is studied.

References

1.
Khanafer
,
K.
,
Vafai
,
K.
, and
Lightstone
,
M.
,
2003
, “
Buoyancy-Driven Heat Transfer Enhancement in a Two-Dimensional Enclosure Utilizing Nanofluids
,”
Int. J. Heat Mass Transfer
,
46
(
19
), pp.
3639
3653
.10.1016/S0017-9310(03)00156-X
2.
Buongiorno
,
J.
,
2006
, “
Convective Transport in Nanofluids
,”
ASME J. Heat Mass Trans.
,
128
, pp.
240
250
.10.1115/1.2150834
3.
Siddheshwar
,
P. G.
,
Kanchana
,
C.
,
Kakimoto
,
Y.
, and
Nakayama
,
A.
,
2017
, “
Steady Finite-Amplitude Rayleigh–Bénard Convection in Nanoliquids Using a Two-Phase Model: Theoretical Answer to the Phenomenon of Enhanced Heat Transfer
,”
ASME J. Heat Mass Trans.
,
139
(
1
), pp.
1
8
.10.1115/1.4034484
4.
Siddheshwar
,
P. G.
, and
Meenakshi
,
N.
,
2017
, “
Amplitude Equation and Heat Transport for Rayleigh–Bénard Convection in Newtonian Liquids With Nanoparticles
,”
Int. J. Appl. Comput. Math.
,
3
(
1
), pp.
271
292
.10.1007/s40819-015-0106-y
5.
Abu-Nada
,
E.
,
2011
, “
Rayleigh-Bénard Convection in Nanofluids: Effect of Temperature Dependent Properties
,”
Int. J. Therm. Sci.
,
50
(
9
), pp.
1720
1730
.10.1016/j.ijthermalsci.2011.04.003
6.
Corcione
,
M.
,
2011
, “
Rayleigh-Bénard Convection Heat Transfer in Nanoparticle Suspensions
,”
Int. J. Heat Fluid Flow
,
32
(
1
), pp.
65
77
.10.1016/j.ijheatfluidflow.2010.08.004
7.
Ahuja
,
J.
, and
Gupta
,
U.
,
2019
, “
Rayleigh-Bénard Convection for Nanofluids for More Realistic Boundary Conditions (Rigid-Free and Rigid-Rigid) Using Darcy Model
,”
Int. J. Math. Eng. Manag. Sci.
,
4
(
1
), pp.
139
156
.10.33889/IJMEMS.2019.4.1-013
8.
Siddheshwar
,
P. G.
, and
Sakshath
,
T. N.
,
2021
, “
Steady Finite Amplitude Rayleigh–Bénard Convection of Ethylene Glycol–Copper Nanoliquid in a High-Porosity Medium Made of 30% Glass Fiber-Reinforced Polycarbonate
,”
J. Therm. Anal. Calorim.
,
143
(
1
), pp.
485
502
.10.1007/s10973-019-09214-4
9.
Weidman
,
P. D.
, and
Kassoy
,
D. R.
,
1986
, “
The Influence of Side Wall Heat Transfer on Convection in a Confined Saturated Porous Medium
,”
Phys. Fluids
,
29
(
2
), pp.
349
355
.10.1063/1.865718
10.
Weidman
,
P. D.
, and
Kubitschek
,
J. P.
,
2013
, “
Stability of a Fluid-Saturated Porous Medium Heated From Below by Forced Convection (Vol 46, pg. 3697, 2003)
,”
Int. J. Heat Mass Transfer
,
64
, pp.
79
79
.10.1016/j.ijheatmasstransfer.2013.04.024
11.
Nyg
å
Rd
,
H. S.
, and
Tyvand
,
P. A.
,
2010
, “
Onset of Convection in a Porous Box With Partly Conducting and Partly Penetrative Sidewalls
,”
Transp. Porous Media
,
84
(
1
), pp.
55
73
.10.1007/s11242-009-9484-0
12.
Nyg
å
Rd
,
H. S.
, and
Tyvand
,
P. A.
,
2011
, “
Onset of Thermal Convection in a Vertical Porous Cylinder With a Partly Conducting and Partly Penetrative Cylinder Wall
,”
Transp. Porous Media
,
86
(
1
), pp.
229
241
.10.1007/s11242-010-9618-4
13.
Barletta
,
A.
, and
Storesletten
,
L.
,
2011
, “
Onset of Convective Rolls in a Circular Porous Duct With External Heat Transfer to a Thermally Stratified Environment
,”
Int. J. Therm. Sci.
,
50
(
8
), pp.
1374
1384
.10.1016/j.ijthermalsci.2011.03.010
14.
Barletta
,
A.
, and
Storesletten
,
L.
,
2012
, “
A Three-Dimensional Study of the Onset of Convection in a Horizontal, Rectangular Porous Channel Heated From Below
,”
Int. J. Therm. Sci.
,
55
, pp.
1
15
.10.1016/j.ijthermalsci.2011.12.012
15.
Barletta
,
A.
, and
Storesletten
,
L.
,
2012
, “
Onset of Convection in a Porous Rectangular Channel With External Heat Transfer to Upper and Lower Fluid Environments
,”
Transp. Porous Media
,
94
(
3
), pp.
659
681
.10.1007/s11242-012-0018-9
16.
Goluskin
,
D.
, and
Doering
,
C. R.
,
2016
, “
Bounds for Convection Between Rough Boundaries
,”
J. Fluid Mech.
,
804
, pp.
370
386
.10.1017/jfm.2016.528
17.
Celli
,
M.
, and
Kuznetsov
,
A. V.
,
2018
, “
A New Hydrodynamic Boundary Condition Simulating the Effect of Rough Boundaries on the Onset of Rayleigh-Bénard Convection
,”
Int. J. Heat Mass Transfer
,
116
, pp.
581
586
.10.1016/j.ijheatmasstransfer.2017.09.052
18.
Akbarzadeh
,
P.
, and
Mahian
,
O.
,
2018
, “
The Onset of Nanofluid Natural Convection Inside a Porous Layer With Rough Boundaries
,”
J. Mol. Liq.
,
272
, pp.
344
352
.10.1016/j.molliq.2018.09.074
19.
Narayana
,
M.
,
Shekar
,
M.
,
Siddheshwar
,
P. G.
, and
Anuraj
,
N. V.
,
2021
, “
On the Differential Transform Method of Solving Boundary Eigenvalue Problems: An Illustration
,”
J. Appl. Math. Mech.
,
101
(
5
), p.
e202000114
.10.1002/zamm.202000114
20.
Siddheshwar
,
P. G.
,
1995
, “
Convective Instability of Ferromagnetic Fluids Bounded by Fluid-Permeable, Magnetic Boundaries
,”
J. Magn. Magn. Mater.
,
149
(
1–2
), pp.
148
150
.10.1016/0304-8853(95)00358-4
21.
Brinkman
,
H. C.
,
1952
, “
The Viscosity of Concentrated Suspensions and Solutions
,”
J. Chem. Phys.
,
20
(
4
), pp.
571
571
.10.1063/1.1700493
22.
Hamilton
,
R. L.
, and
Crosser
,
O.
,
1962
, “
Thermal Conductivity of Heterogeneous Two-Component Systems
,”
Ind. Eng. Chem. Fundam.
,
1
(
3
), pp.
187
191
.10.1021/i160003a005
23.
Beavers
,
G. S.
, and
Joseph
,
D. D.
,
1967
, “
Boundary Conditions at a Naturally Permeable Wall
,”
J. Fluid Mech.
,
30
(
1
), pp.
197
207
.10.1017/S0022112067001375
24.
Saffman
,
P. G.
,
1971
, “
On the Boundary Condition at the Surface of a Porous Medium
,”
Stud. Appl. Math.
,
50
(
2
), pp.
93
101
.10.1002/sapm197150293
25.
Turkyilmazoglu
,
M.
,
Cole
,
J. W.
, and
Gajjar
,
J. S. B.
,
2000
, “
Absolute and Convective Instabilities in the Compressible Boundary Layer on a Rotating Disk
,”
Theor. Comput. Fluid Dyn.
,
14
(
1
), pp.
21
37
.10.1007/s001620050123
26.
Turkyilmazoglu
,
M.
, and
Gajjar
,
J. S. B.
,
2001
, “
An Analytic Approach for Calculating Absolutely Unstable Inviscid Modes of the Boundary Layer on a Rotating Disk
,”
Stud. Appl. Math.
,
106
(
4
), pp.
419
435
.10.1111/1467-9590.00173
27.
Siddheshwar
,
P. G.
, and
Veena
,
B. N.
,
2018
, “
A Theoretical Study of Natural Convection of Water-Based Nanoliquids in Low-Porosity Enclosures Using Single-Phase Model
,”
J. Nanofluids
,
7
(
1
), pp.
163
174
.10.1166/jon.2018.1418
28.
Platten
,
J. K.
, and
Legros
,
J. C.
,
2012
,
Convection in Liquids
,
Springer Science & Business Media
,
New York
.
You do not currently have access to this content.