Abstract

Three-dimensional (3D) bioprinting is a fabrication method with many biomedical applications, particularly within tissue engineering. The use of freezing during 3D bioprinting, aka “3D cryoprinting,” can be utilized to create micopores within tissue-engineered scaffolds to enhance cell proliferation. When used with alginate bio-inks, this type of 3D cryoprinting requires three steps: 3D printing, crosslinking, and freezing. This study investigated the influence of crosslinking order and cooling rate on the microstructure and mechanical properties of sodium alginate scaffolds. We designed and built a novel modular 3D printer in order to study the effects of these steps separately and to address many of the manufacturing issues associated with 3D cryoprinting. With the modular 3D printer, 3D printing, crosslinking, and freezing were conducted on separate modules yet remain part of a continuous manufacturing process. Crosslinking before the freezing step produced highly interconnected and directional pores, which are ideal for promoting cell growth. By controlling the cooling rate, it was possible to produce pores with diameters from a range of 5 μm to 40 μm. Tensile and firmness testing found that the use of freezing does not decrease the tensile strength of the printed objects, though there was a significant loss in firmness for strands with larger pores.

References

1.
Vijayavenkataraman
,
S.
,
Yan
,
W. C.
,
Lu
,
W. F.
,
Wang
,
C. H.
, and
Fuh
,
J. Y. H.
,
2018
, “
3D Bioprinting of Tissues and Organs for Regenerative Medicine
,”
Adv. Drug Deliv. Rev.
,
132
, pp.
296
332
.10.1016/j.addr.2018.07.004
2.
Irvine
,
D. J.
,
Stachowiak
,
A. N.
, and
Hori
,
Y.
,
2008
, “
Lymphoid Tissue Engineering: Invoking Lymphoid Tissue Neogenesis in Immunotherapy and Models of Immunity
,”
Semin. Immunol.
,
20
(
2
), pp.
137
146
.10.1016/j.smim.2007.10.010
3.
Sun
,
J.
, and
Tan
,
H.
,
2013
, “
Alginate-Based Biomaterials for Regenerative Medicine Applications
,”
Materials
,
6
(
4
), pp.
1285
1309
.10.3390/ma6041285
4.
Wang
,
C.
,
Ye
,
X.
,
Zhao
,
Y.
,
Bai
,
L.
,
He
,
Z.
,
Tong
,
Q.
,
Xie
,
X.
,
Zhu
,
H.
,
Cai
,
D.
,
Zhou
,
Y.
,
Lu
,
B.
,
Wei
,
Y.
,
Mei
,
L.
,
Xie
,
D.
, and
Wang
,
M.
,
2020
, “
Cryogenic 3D Printing of Porous Scaffolds for in Situ Delivery of 2D Black Phosphorus Nanosheets, Doxorubicin Hydrochloride and Osteogenic Peptide for Treating Tumor Resection-Induced Bone Defects
,”
Biofabrication
,
12
(
3
), p.
035004
.10.1088/1758-5090/ab6d35
5.
Tan
,
Z.
,
Parisi
,
C.
,
Di Silvio
,
L.
,
Dini
,
D.
, and
Forte
,
A. E.
,
2017
, “
Cryogenic 3D Printing of Super Soft Hydrogels
,”
Sci. Rep.
,
7
(
1
), p. 16293.10.1038/s41598-017-16668-9
6.
Warburton
,
L.
,
Liu
,
C.
,
Dharmadhikari
,
K.
,
Vemulakonda
,
P.
,
Cheema
,
Y.
,
Kewelramani
,
N.
, and Sidelnikov, D.,et al
2019
, “
Utilization of Cryogenic Temperatures to Reduce Line Width Variability in 3D Bioprinted Hydrogel Lattices
,”
Trans. Addit. Manuf. Meets Med.
,
1
(
1
), epub.10.18416/AMMM.2019.1909S03P15
7.
Freyman
,
T. M.
,
Yannas
,
I. V.
, and
Gibson
,
L. J.
,
2001
, “
Cellular Materials as Porous Scaffolds for Tissue Engineering
,”
Prog. Mater. Sci.
,
46
(
3–4
), pp.
273
282
.10.1016/S0079-6425(00)00018-9
8.
Feng
,
P.
,
Wei
,
P.
,
Shuai
,
C.
, and
Peng
,
S.
,
2014
, “
Characterization of Mechanical and Biological Properties of 3-D Scaffolds Reinforced With Zinc Oxide for Bone Tissue Engineering
,”
PLoS One
,
9
(
1
), p.
e87755
.10.1371/journal.pone.0087755
9.
Maleki
,
H.
,
Shahbazi
,
M. A.
,
Montes
,
S.
,
Hosseini
,
S. H.
,
Eskandari
,
M. R.
,
Zaunschirm
,
S.
,
Verwanger
,
T.
,
Mathur
,
S.
,
Milow
,
B.
,
Krammer
,
B.
, and
Hüsing
,
N.
,
2019
, “
Mechanically Strong Silica-Silk Fibroin Bioaerogel: A Hybrid Scaffold With Ordered Honeycomb Micromorphology and Multiscale Porosity for Bone Regeneration
,”
ACS Appl. Mater. Interfaces
,
11
(
19
), pp.
17256
17269
.10.1021/acsami.9b04283
10.
Tetik
,
H.
,
Wang
,
Y.
,
Sun
,
X.
,
Cao
,
D.
,
Shah
,
N.
,
Zhu
,
H.
,
Qian
,
F.
, and
Lin
,
D.
,
2021
, “
Additive Manufacturing of 3D Aerogels and Porous Scaffolds: A Review
,”
Adv. Funct. Mater.
,
2103410
, p.
2103410
.10.1002/adfm.202103410
11.
De France
,
K. J.
,
Xu
,
F.
, and
Hoare
,
T.
,
2018
, “
Structured Macroporous Hydrogels: Progress, Challenges, and Opportunities
,”
Adv. Healthcare Mater.
,
7
(
1
), pp.
1
17
.10.1002/adhm.201700927
12.
Preciado
,
J. A.
,
Cohen
,
S.
,
Skandakumaran
,
P.
, and
Rubinsky
,
B.
,
2003
, “
Utilization of Directional Freezing for the Construction of Tissue Engineering Scaffolds
,”
Am. Soc. Mech. Eng. Heat Transfer Div.
,
374
(
4
), pp.
439
442
.10.1115/IMECE2003-42067
13.
Zhang
,
Y.
,
Wang
,
C.
,
Fu
,
L.
,
Ye
,
S.
,
Wang
,
M.
, and
Zhou
,
Y.
,
2019
, “
Fabrication and Application of Novel Porous Scaffold in Situ-Loaded Graphene Oxide and Osteogenic Peptide by Cryogenic 3D Printing for Repairing Critical-Sized Bone Defect
,”
Molecules
,
24
(
9
), p.
1669
.
14.
Gutiérrez
,
M. C.
,
Ferrer
,
M. L.
, and
del Monte
,
F.
,
2008
, “
Ice-Templated Materials: Sophisticated Structures Exhibiting Enhanced Functionalities Obtained After Unidirectional Freezing and Ice-Segregation-Induced Self-Assembly
,”
Chem. Mater.
,
20
(
3
), pp.
634
648
.10.1021/cm702028z
15.
Nishihara
,
H.
,
Mukai
,
S. R.
,
Yamashita
,
D.
, and
Tamon
,
H.
,
2005
, “
Ordered Macroporous Silica by Ice Templating
,”
Chem. Mater.
,
17
(
3
), pp.
683
689
.10.1021/cm048725f
16.
Song
,
X.
,
Tetik
,
H.
,
Jirakittsonthon
,
T.
,
Parandoush
,
P.
,
Yang
,
G.
,
Lee
,
D.
,
Ryu
,
S.
,
Lei
,
S.
,
Weiss
,
M. L.
, and
Lin
,
D.
,
2019
, “
Biomimetic 3D Printing of Hierarchical and Interconnected Porous Hydroxyapatite Structures With High Mechanical Strength for Bone Cell Culture
,”
Adv. Eng. Mater.
,
21
(
1
), p.
1800678
.10.1002/adem.201800678
17.
Bozkurt
,
A.
,
Brook
,
G. A.
,
Moellers
,
S.
,
Lassner
,
F.
,
Sellhaus
,
B.
,
Weis
,
J.
,
Woeltje
,
M.
,
Tank
,
J.
,
Beckmann
,
C.
,
Fuchs
,
P.
,
Damink
,
L. O.
,
Schügner
,
F.
,
Heschel
,
I.
, and
Pallua
,
N.
,
2007
, “
In Vitro Assessment of Axonal Growth Using Dorsal Root Ganglia Explants in a Novel Three-Dimensional Collagen Matrix
,”
Tissue Eng.
,
13
(
12
), pp.
2971
2979
.10.1089/ten.2007.0116
18.
Qi
,
X.
,
Ye
,
J.
, and
Wang
,
Y.
,
2009
, “
Alginate/Poly, Lactic-co-Glycolic Acid)/Calcium Phosphate Cement Scaffold With Oriented Pore Structure for Bone Tissue Engineering
,”
J. Biomed. Mater. Res. Part A
,
89
(
4
), pp.
980
987
.10.1002/jbm.a.32054
19.
Kaczmarek-Pawelska
,
A.
,
2020
, “
Alginate-Based Hydrogels in Regenerative Medicine
,”
Alginates—Recent Uses of This Natural Polymer
, IntechOpen, Rijeka, Croatia.
20.
GhavamiNejad
,
A.
,
Ashammakhi
,
N.
,
Wu
,
X. Y.
, and
Khademhosseini
,
A.
,
2020
, “
Crosslinking Strategies for 3D Bioprinting of Polymeric Hydrogels
,”
Small
,
16
(
35
), p.
2002931
.10.1002/smll.202002931
21.
Yang
,
L.
,
Tanabe
,
K.
,
Miura
,
T.
,
Yoshinari
,
M.
,
Takemoto
,
S.
,
Shintani
,
S.
, and
Kasahara
,
M.
,
2017
, “
Influence of Lyophilization Factors and Gelatin Concentration on Pore Structures of Atelocollagen/Gelatin Sponge Biomaterial
,”
Dental Mater. J.
,
36
(
4
), pp.
429
437
.10.4012/dmj.2016-242
22.
Shahbazi
,
M. A.
,
Ghalkhani
,
M.
, and
Maleki
,
H.
,
2020
, “
Directional Freeze‐Casting: A Bioinspired Method to Assemble Multifunctional Aligned Porous Structures for Advanced Applications
,”
Adv. Eng. Mater.
,
22
(
7
), p.
2000033
.10.1002/adem.202000033
23.
Annabi
,
N.
,
Nichol
,
J. W.
,
Zhong
,
X.
,
Ji
,
C.
,
Koshy
,
S.
,
Khademhosseini
,
A.
, and
Dehghani
,
F.
,
2010
, “
Controlling the Porosity and Microarchitecture of Hydrogels for Tissue Engineering
,”
Tissue Eng. Part B Rev.
,
16
(
4
), pp.
371
383
.10.1089/ten.teb.2009.0639
24.
Kim
,
G.
,
Ahn
,
S.
,
Yoon
,
H.
,
Kim
,
Y.
, and
Chun
,
W.
,
2009
, “
A Cryogenic Direct-Plotting System for Fabrication of 3D Collagen Scaffolds for Tissue Engineering
,”
J. Mater. Chem.
,
19
(
46
), pp.
8817
8823
.10.1039/b914187a
25.
Liu
,
H.
,
Zhang
,
G.
, and
Li
,
H.
,
2017
, “
Preparation and Properties of GO-PVA Composite Hydrogel With Oriented Structure
,”
AIP Conf. Proc.
,
1820
(
1)
, p.
030009
.10.1063/1.4977266
26.
Fu
,
S.
,
Thacker
,
A.
,
Sperger
,
D. M.
,
Boni
,
R. L.
,
Buckner
,
I. S.
,
Velankar
,
S.
,
Munson
,
E. J.
, and
Block
,
L. H.
,
2011
, “
Relevance of Rheological Properties of Sodium Alginate in Solution to Calcium Alginate Gel Properties
,”
AAPS PharmSciTech
,
12
(
2
), pp.
453
460
.10.1208/s12249-011-9587-0
27.
Sahoo
,
D. R.
, and
Biswal
,
T.
,
2021
, “
Alginate and Its Application to Tissue Engineering
,”
SN Appl. Sci.
,
3
(
1
), pp.
1
19
.10.1007/s42452-020-04096-w
28.
Kuo
,
C. K.
, and
Ma
,
P. X.
,
2008
, “
Maintaining Dimensions and Mechanical Properties of Ionically Crosslinked Alginate Hydrogel Scaffolds in Vitro
,”
J. Biomed. Mater. Res. Part A
,
84
(
4
), pp.
899
907
.10.1002/jbm.a.31375
29.
Hurler
,
J.
,
Engesland
,
A.
,
Poorahmary Kermany
,
B.
, and
Škalko‐Basnet
,
N.
,
2012
, “
Improved Texture Analysis for Hydrogel Characterization: Gel Cohesiveness, Adhesiveness, and Hardness
,”
J. Appl. Polym. Sci.
,
125
(
1
), pp.
180
188
.10.1002/app.35414
You do not currently have access to this content.