Abstract

The Falkner–Skan flow over a wedge is classic in boundary layer theory. We consider the heat or mass transfer from a source at the vertex of the wedge. The interactions of the thermal boundary layer and momentum boundary layer lead to nonlinear similarity equations which are integrated numerically. There exists a mixing index that depends on the Prandtl number and the wedge opening angle. Attention is paid to special cases such as forced convection in Blasius flow past a semi-infinite plate and the Hiemenz stagnation flow normal to a plate.

References

1.
Jones
,
C. W.
, and
Watson
,
E. J.
,
1963
, “
Two-Dimensional Boundary Layers
,”
Laminar Boundary Layers
,
L.
Rosenhead
ed.,
Clarendon
,
Oxford, UK
.
2.
Schlichting
,
H.
, and
Gersten
,
K.
,
2000
,
Boundary-Layer Theory
,
8
th ed.,
Springer
,
Berlin, Germany
.
3.
Stojanovic
,
D.
,
1959
, “
Similar Temperature Boundary Layers
,”
J. Aeronaut. Sci.
,
26
(
9
), pp.
571
574
.10.2514/8.8206
4.
Schenk
,
J.
,
1964
, “
Similarity Conditions for Heat Transfer in Incompressible Two-Dimensional Laminar Boundary Layer Flow
,”
Appl. Sci. Res.
,
13
(
1
), pp.
339
348
.10.1007/BF00382060
5.
Lin
,
H. T.
, and
Lin
,
L. K.
,
1987
, “
Similarity Solutions for Laminar Forced Convection Heat Transfer From Wedges to Fluids of Any Prandtl Number
,”
Int. J. Heat Mass Transfer
,
30
(
6
), pp.
1111
1118
.10.1016/0017-9310(87)90041-X
6.
Wang
,
C. Y.
, and
Chang
,
C. C.
,
2019
, “
New Closed-Form Thermal Boundary Layer Solutions in Shear Flow With Power-Law Velocity
,”
ASME J. Heat Transfer-Trans. ASME
,
141
(
6
), p.
064502
.10.1115/1.4042489
You do not currently have access to this content.