Abstract

This study presents, for the first time, distributions of local internal temperature and convective heat transfer in a rotating radial vane brake disk and explains mechanisms in conjunction with secondary flows and flow separation within its ventilated coolant passages. In particular, variations of radial, circumferential (vane-to-vane), and axial (inboard-to-outboard) heat transfer on internal end-wall surfaces, and their alteration due to varying number of radial vanes and rotating speed are experimentally detailed. It has been demonstrated that conventional ventilated radial brake disks where the air inflow is drawn from the inboard face are likely to suffer substantial axial variations of temperature and heat transfer between the inboard and outboard disks, which possibly exacerbates thermal distortion (i.e., coning). Further, for a typical number of vanes (i.e., 36 vanes) used on automobiles, internal thermal distributions are highly nonuniform. However, the thermal end-wall uniformity improves considerably as the number of vanes is increased to say 72 vanes. Specifically, as the number of vanes is increased, secondary flow mixing enhances overall convective heat transfer and improves thermal uniformity. In contrast, separation causes large end-wall thermal nonuniformities in radial and circumferential distributions between the pressure side and the suction side of radial vanes. This effect nonetheless also decreases as the number of vanes is increased.

References

1.
Limpert
,
R.
,
2011
,
Brake Design and Safety
,
SAE International
,
Warrendale, PA
, pp.
65
188
.
2.
Limpert
,
R.
,
1975
, “
Cooling Analysis of Disc Brake Rotors
,”
SAE Paper No. 751014
.10.4271/751014
3.
Limpert
,
R.
,
1975
, “
The Thermal Performance of Automotive Disc Brakes
,”
SAE Paper No. 750873
.10.4271/750873
4.
Voller
,
G. P.
,
2003
, “
Analysis of Heat Dissipation From Railway and Automotive Friction Brakes
,”
Ph.D. dissertation
,
Brunel University
,
London, UK
.http://bura.brunel.ac.uk/handle/2438/5558
5.
Newcomb
,
T. P.
, and
Millner
,
N.
,
1965
, “
Cooling Rates of Brake Drums and Discs
,”
Proc. Inst. Mech. Eng, Autom. Div.
,
1802A
(
1
), pp.
191
205
.10.1243/PIME_AUTO_1965_180_019_02
6.
Zhang
,
J. J.
,
1996
, “
High Cooling Air Flow Rate Brake Rotor
,” U.S. Patent No. 5492205.
7.
Atkins
,
M. A.
,
Kienhöfer
,
F. W.
,
Kang
,
K. J.
,
Lu
,
T. J.
, and
Kim
,
T.
,
2021
, “
Cooling Mechanisms in a Rotating Brake Disc With a Wire-Woven-Bulk Diamond Cellular Core
,”
ASME J. Therm. Sci. Eng. Appl.
,
13
(
4
), p.
041005
.10.1115/1.4048918
8.
Abbas
,
S. A.
,
Cubitt
,
N. J.
, and
Hooke
,
C. J.
,
1969
, “
Temperature Distributions in Disc Brakes
,”
Proc. Inst. Mech. Eng.
,
184
(
1
), pp.
185
194
.10.1243/PIME_AUTO_1969_184_020_02
9.
Abbas
,
S. A.
,
Cubitt
,
N. J.
, and
Hooke
,
C. J.
,
1972
, “
Design and Stress Analysis of No-Coning Brake Discs
,”
J. Mech. Eng. Sci.
,
14
(
4
), pp.
255
263
.10.1243/JMES_JOUR_1972_014_033_02
10.
Rhee
,
S. K.
,
1974
, “
Frictional Properties of Phenolic Resin Filled With Iron and Graphite- Sensitivity to Load, Speed and Temperature
,”
Wear
,
28
(
2
), pp.
277
281
.10.1016/0043-1648(74)90169-0
11.
Ramachandra Rao
,
V. T. V. S.
,
Ramasubramanian
,
H.
, and
Seetharamu
,
K. N.
,
1989
, “
Analysis of Temperature Field in Brake Disc for Fade Assessment
,”
Wärme-Und Stoffübertragung (Heat Mass Transfer)
,
24
(
1
), pp.
9
17
.10.1007/BF01599500
12.
Rhee
,
S. K.
,
1971
, “
Wear of Metal-Reinforced Phenolic Resins
,”
Wear
,
18
(
6
), pp.
471
477
.10.1016/0043-1648(71)90171-2
13.
Jacko
,
M. G.
,
1978
, “
Physical and Chemical Changes of Organic Disc Pads in Service
,”
Wear
,
46
(
1
), pp.
163
175
.10.1016/0043-1648(78)90118-7
14.
Rhee
,
S. K.
,
Jacko
,
M. G.
, and
Tsang
,
P. H. S.
,
1991
, “
The Role of Friction Film in Friction, Wear and Noise of Automotive Brakes
,”
Wear
,
146
(
1
), pp.
89
97
.10.1016/0043-1648(91)90226-K
15.
Gerrard
,
M. D.
,
1993
, “
Thermal Distortion of Ventilated Brake Discs
,” M.Sc. thesis,
Durham University
,
UK
.
16.
Hsu
,
F.
, and
Oakwood
,
C.
,
2007
, “
Aerodynamic Vented Rotor
,” U.S. Patent No. US 2007/0261929 A1.
17.
Mackin
,
T. J.
,
Noe
,
S. C.
,
Ball
,
K. J.
,
Bedell
,
B. C.
,
Bim-Merle
,
D. P.
,
Bingaman
,
M. C.
,
Bomleny
,
D. M.
,
Chemlir
,
G. J.
,
Clayton
,
D. B.
,
Evans
,
H. A.
,
Gau
,
R.
,
Hart
,
J. L.
,
Karney
,
J. S.
,
Kiple
,
B. P.
,
Kaluga
,
R. C.
,
Kung
,
P.
,
Law
,
A. K.
,
Lim
,
D.
,
Merema
,
R. C.
,
Miller
,
B. M.
,
Miller
,
T. R.
,
Nielson
,
T. J.
,
O'Shea
,
T. M.
,
Olson
,
M. T.
,
Padilla
,
H. A.
,
Penner
,
B. W.
,
Penny
,
C.
,
Peterson
,
R. P.
,
Polidoro
,
V. C.
,
Raghu
,
A.
,
Resor
,
B. R.
,
Robinson
,
B. J.
,
Schambach
,
D.
,
Snyder
,
B. D.
,
Tom
,
E.
,
Tschantz
,
R. R.
,
Walker
,
B. M.
,
Wasielewski
,
K. E.
,
Webb
,
T. R.
,
Wise
,
S. A.
,
Yang
,
R. S.
, and
Zimmerman
,
R. S.
,
2002
, “
Thermal Cracking in Disc Brakes
,”
Eng. Failure Anal.
,
9
(
1
), pp.
63
76
.10.1016/S1350-6307(00)00037-6
18.
Le Gigan
,
G.
,
Vernersson
,
T.
,
Lundén
,
R.
, and
Skoglund
,
P.
,
2015
, “
Disc Brakes for Heavy Vehicles: An Experimental Study of Temperatures and Cracks
,”
Proc. Inst. Mech., Eng., Part D
,
229
(
6
), pp.
684
707
.10.1177/0954407014550843
19.
Vdovin
,
A.
,
Gustafsson
,
M.
, and
Sebben
,
S.
,
2018
, “
A Coupled Approach for Vehicle Brake Cooling Performance Simulations
,”
Int. J. Therm. Sci.
,
132
, pp.
257
266
.10.1016/j.ijthermalsci.2018.05.016
20.
McPhee
,
A. D.
, and
Johnson
,
D. A.
,
2008
, “
Experimental Heat Transfer and Flow Analysis of a Vented Brake Rotor
,”
Int. J. Therm. Sci.
,
47
(
4
), pp.
458
467
.10.1016/j.ijthermalsci.2007.03.006
21.
Barigozzi
,
G.
,
Perdichizzi
,
A.
,
Pacchlana
,
P.
, and
Goller
,
R.
,
2005
, “
Aero-Thermal Characteristics of an Automotive CCM Vented Brake Disc
,”
SAE Paper No. 2005-01-3930
.10.4271/2005-01-3930
22.
Galindo-Lopez
,
C. H.
, and
Tirovic
,
M.
,
2008
, “
Understanding and Improving the Convective Cooling of Brake Discs With Radial Vanes
,”
Proc. Inst. Mech. Eng., Part D
,
222
(
7
), pp.
1211
1229
.10.1243/09544070JAUTO594
23.
Palmer
,
E.
,
Mishra
,
R.
,
Fieldhouse
,
J.
, and
Layfield
,
J.
,
2008
, “
Analysis of Air Flow and Heat Dissipation From a High-Performance GT Car Front Brake
,”
SAE Paper No. 2008-01-0820
.10.4271/2008-01-0820
24.
Parish
,
D.
, and
MacManus
,
D. G.
,
2005
, “
Aerodynamic Investigations of Ventilated Brake Discs
,”
Proc. Inst. Mech. Eng., Part D
,
219
(
4
), pp.
471
486
.10.1243/095440705X11121
25.
Atkins
,
M. D.
,
Kienhöfer
,
F. W.
, and
Kim
,
T.
,
2019
, “
Flow Behavior in Radial Vane Disk Brake Rotors at Low Rotational Speeds
,”
ASME J. Fluid Eng.
,
141
(
8
), p.
081105
.10.1115/1.4042470
26.
Barigozzi
,
G.
,
Cossali
,
G. E.
,
Perdichizzi
,
A.
,
Boden
,
A.
, and
Paccchiana
,
P.
,
2002
, “
Experimental Investigation of the Mean and Turbulent Flow Characteristics at the Exit of Automotive Vented Brake Discs
,”
SAE Paper No. 2002-01-2590
.10.4271/2002-01-2590
27.
Qian
,
C.
,
2002
, “
Aerodynamic Shape Optimization Using CFD Parametric Model With Brake Cooling Application
,”
SAE Paper No. 2002-01-0599
.10.4271/2002-01-0599
28.
Atkins
,
M. D.
,
Kienhöfer
,
F. W.
,
Lu
,
T. J.
, and
Kim
,
T.
,
2020
, “
Local Heat Transfer Distributions Within a Rotating Pin-Finned Brake Disc
,”
ASME J. Heat Transfer-Trans. ASME
,
142
(
11
), p.
112101
.10.1115/1.4047836
29.
Gillespie
,
D. R. H.
,
1996
, “
Intricate Internal Cooling Systems for Gas Turbine Blading
,” D.Phil. thesis,
University of Oxford
,
Oxford, UK
.
30.
Baughn
,
J. W.
,
Anderson
,
M. R.
,
Mayhew
,
J. E.
, and
Wolf
,
J. D.
,
1999
, “
Hysteresis of Thermochromic Liquid Crystal Temperature Measurement Based on Hue
,”
ASME J. Heat Transfer-Trans. ASME
,
121
(
4
), pp.
1067
1072
.10.1115/1.2826057
31.
Ireland
,
P. T.
, and
Jones
,
T. V.
,
2000
, “
Liquid Crystal Measurements of Heat Transfer and Surface Shear Stress
,”
Meas. Sci. Technol.
,
11
(
7
), pp.
969
986
.10.1088/0957-0233/11/7/313
32.
Ekkad
,
S. V.
, and
Han
,
J. C.
,
2000
, “
A Transient Liquid Crystal Thermography Technique for Gas Turbine Heat Transfer Measurements
,”
Meas. Sci. Technol.
,
11
(
7
), pp.
957
968
.10.1088/0957-0233/11/7/312
33.
Poser
,
R.
,
von Wolfersdorf
,
J.
, and
Lutum
,
E.
,
2007
, “
Advanced Evaluation of Transient Heat Transfer Experiments Using Thermochromic Liquid Crystals
,”
Proc. Inst. Mech. Eng. Part A J. Power Energy
,
221
(
6
), pp.
793
801
.10.1243/09576509JPE464
34.
Steurer
,
A.
,
Poser
,
R.
,
von Wolfersdorf
,
J.
, and
Retzko
,
S.
,
2019
, “
Application of the Transient Heat Transfer Measurement Technique Using Thermochromic Liquid Crystals in a Network Configuration With Intersecting Circular Passages
,”
ASME J. Turbomach.
,
141
(
5
), p.
051010
.10.1115/1.4041807
35.
Mills
,
A. F.
,
1995
,
Basic Heat and Mass Transfer
,
Irwin
,
Chicago, IL
, p.
147
.
36.
Coleman
,
H. W.
, and
Steele
,
W. G.
,
1999
,
Experimentation and Uncertainty Analysis for Engineers Second Edition
,
Wiley
,
New York
, pp.
38
84
.
37.
Moffat
,
R. J.
,
1982
, “
Contributions to the Theory of Single-Sample Uncertainty Analysis
,”
ASME J. Fluid Eng.
,
104
(
2
), pp.
250
258
.10.1115/1.3241818
38.
Moffat
,
R. J.
,
1988
, “
Describing the Uncertainties in Experimental Results
,”
Exp. Therm. Fluid Sci.
,
1
(
1
), pp.
3
17
.10.1016/0894-1777(88)90043-X
39.
Westerweel
,
J.
,
2000
, “
Theoretical Analysis of the Measurement Precision in Particle Image Velocimetry
,”
Exp. Fluids
,
29
(
7
), pp.
S003
S012
.10.1007/s003480070002
40.
Westerweel
,
J.
,
2008
, “
On Velocity Gradients in PIV Interrogation
,”
Exp. Fluids
,
44
(
5
), pp.
831
842
.10.1007/s00348-007-0439-3
41.
Adrian
,
R. J.
, and
Westerweel
,
J.
,
2011
,
Particle Image Velocimetry
,
Cambridge University Press
,
Cambridge
, pp.
125
127
.
42.
Moore
,
J.
,
1967
, “
Effects of Coriolis Force on the Turbulent Boundary Layer in Rotating Fluid Machines
,” M.Sc. dissertation,
Massachusetts Institute of Technology
,
Cambridge, MA
.
43.
Greitzer
,
E. M.
,
Tan
,
C. S.
, and
Graf
,
M. B.
,
2004
,
Internal Flow Concepts and Applications
,
Cambridge University Press
,
Cambridge
, pp.
365
378
.
44.
Rothe
,
P. H.
, and
Johnston
,
J. P.
,
1976
, “
Effects of System Rotation on the Performance of Two-Dimensional Diffusers
,”
ASME J. Fluid Eng.
,
98
(
3
), pp.
422
429
.10.1115/1.3448347
45.
Johnston
,
J. P.
,
1974
, “
The Effects of Rotation on Boundary Layers in Turbomachine Rotor
,”
NTRS
, Report No. 19750003111.
46.
Shevchuk
,
I. V.
,
2000
, “
Turbulent Heat Transfer of Rotating Disk at Constant Temperature or Density of Heat Flux to the Wall
,”
High Temp.
,
38
(
3
), pp.
499
501
.10.1007/BF02756017
47.
Shevchuk
,
I. V.
,
2001
, “
Effect of the Wall Temperature on Laminar Heat Transfer in a Rotating Disk: An Approximate Analytical Solution
,”
High Temp.
,
39
(
4
), pp.
637
640
.10.1023/A:1017965029798
48.
Highley
,
F.
,
1971
, “
Techniques for Determining the Thermal Characteristics of Brake Drums and Discs
,”
SAE Paper No. 710589
.10.4271/710589
You do not currently have access to this content.