Abstract

A nonlinear approximation for natural convection boundary layer flow near a vertical wall under the influence of thermal radiation is analyzed. The governing nonlinear partial differential equations are transformed into ordinary differential equations via the similarity transformation. The final dimensionless equations are solved numerically using the Runge Kutta Ferlberg fourth-fifth order (RKF45) method. The effects of the embedded parameters affecting the flow formation, temperature distribution, Nusselt number, and skin friction are thoroughly examined. It is found out that the temperature gradient is directly proportional to the thermal radiation parameter near the vertical plate whereas it is inversely proportional to the temperature gradient far away from the vertical plate. It is also found that the flow formation near the vertical wall could be enhanced with the increase in thermal radiation parameter. However, this increase remains unaffected in the freestream region. Furthermore, results also show that the rate of heat transfer could be enhanced with the increase in thermal radiation whereas decreases with the increase in other embedded flow parameters.

References

1.
Aydın
,
O.
, and
Kaya
,
A.
,
2009
, “
MHD Mixed Convective Heat Transfer Flow About an Inclined Plate
,”
Heat Mass Transfer
,
46
(
1
), pp.
129
136
.10.1007/s00231-009-0551-4
2.
Raju
,
R. S.
,
Sudhakar
,
K.
, and
Rangamma
,
M.
,
2013
, “
The Effects of Thermal Radiation and Heat Source on an Unsteady MHD Free Convection Flow Past an Infinite Vertical Plate With Thermal Diffusion and Diffusion Thermo
,”
J. Inst. Eng. Ser. C
,
94
(
2
), pp.
175
186
.10.1007/s40032-013-0063-3
3.
Magyari
,
E.
, and
Pantokratoras
,
A.
,
2011
, “
Note on the Effect of Thermal Radiation in the Linearized Rosseland Approximation on the Heat Transfer Characteristics of Various Boundary Layer Flows
,”
Int. Commun. Heat Mass Transfer
,
38
(
5
), pp.
554
556
.10.1016/j.icheatmasstransfer.2011.03.006
4.
Makinde
,
O. D.
, and
Ogulu
,
A.
,
2008
, “
The Effect of Thermal Radiation on the Heat and Mass Transfer Flow of a Variable Viscosity Fluid Past a Vertical Porous Plate Permeated by a Transverse Magnetic Field
,”
Chem. Eng. Commun.
,
195
(
12
), pp.
1575
1584
.10.1080/00986440802115549
5.
Tian
,
X.-Y.
,
B.-W
,
L.
, and
Zhang
,
J.-K.
,
2017
, “
The Effects of Radiation Optical Properties on the Unsteady 2D Boundary Layer MHD Flow and Heat Transfer Over a Stretching Plate
,”
Int. J. Heat Mass Transfer
,
105
, pp.
109
123
.10.1016/j.ijheatmasstransfer.2016.09.060
6.
Kogawa
,
T.
,
Shoji
,
E.
,
Okajima
,
J.
,
Komiya
,
A.
, and
Maruyama
,
S.
,
2019
, “
Experimental Evaluation of Thermal Radiation Effects on Natural Convection With a Rayleigh Number of 108–109 by Using an Interferometer
,”
Int. J. Heat Mass Transfer
,
132
, pp.
1239
1249
.10.1016/j.ijheatmasstransfer.2018.11.162
7.
Qasem
,
S. A.
,
Sivasankaran
,
S.
,
Siri
,
Z.
, and
Othman
,
W. A. M.
,
2020
, “
Effect of Thermal Radiation on Natural Conviction of a Nanofluid in a Square Cavity With a Solid Body
,”
Therm. Sci.
, pp.
182
182
. 10.2298/TSCI191003182Q
8.
Wang
,
S.
,
Ai
,
Q.
,
Zou
,
T.
,
Sun
,
C.
, and
Xie
,
M.
,
2020
, “
Analysis of Radiation Effect on Thermal Conductivity Measurement of Semi-Transparent Materials Based on Transient Plane Source Method
,”
Appl. Therm. Eng.
,
177
, p.
115457
.10.1016/j.applthermaleng.2020.115457
9.
Zainal
,
N. A.
,
Nazar
,
R.
,
Naganthran
,
K.
, and
Pop
,
I.
,
2020
, “
MHD Flow and Heat Transfer of Hybrid Nanofluid Over a Permeable Moving Surface in the Presence of Thermal Radiation
,”
Int. J. Numer. Methods Heat Fluid Flow
,
31
(
3
), pp.
858
879
.10.1108/HFF-03-2020-0126
10.
Mikhailenko
,
S. A.
,
Miroshnichenko
,
I. V.
, and
Sheremet
,
M. A.
,
2020
, “
Thermal Radiation and Natural Convection in a Large-Scale Enclosure Heated From Below: Building Application
,”
Building Simul.
,
14
, pp.
1
11
.10.1007/s12273-020-0668-4
11.
Makinde
,
O. D.
, and
Olanrewaju
,
P. O.
,
2010
, “
Buoyancy Effects on Thermal Boundary Layer Over a Vertical Plate With a Convective Surface Boundary Condition
,”
ASME J. Fluids Eng.
,
132
(
4
), p.
44502
.10.1115/1.4001386
12.
Jha
,
B. K.
,
Oni
,
M. O.
, and
Aina
,
B.
,
2018
, “
Steady Fully Developed Mixed Convection Flow in a Vertical Micro-Concentric-Annulus With Heat Generating/Absorbing Fluid: An Exact Solution
,”
Ain Shams Eng. J.
,
9
(
4
), pp.
1289
1301
.10.1016/j.asej.2016.08.005
13.
Jha
,
B.
, and
Oni
,
M.
,
2019
, “
Natural Convection Flow in a Vertical Annulus With Time-Periodic Thermal Boundary Conditions
,”
Propul. Power Res.
,
8
(
1
), pp.
47
55
.10.1016/j.jppr.2018.12.002
14.
Cheng
,
P.
,
1976
, “
Buoyancy Induced Boundary Layer Flows in Geothermal Reservoirs
,”
Proceedings of Second Workshop on Geothermal Reservoir Engineering
, Stanford University, Stanford, CA, pp.
236
246
.
15.
Vajravelu
,
K.
, and
Sastri
,
K. S.
,
1977
, “
Fully Developed Laminar Free Convection Flow Between Two Parallel Vertical Walls—I
,”
Int. J. Heat Mass Transfer
,
20
(
6
), pp.
655
660
.10.1016/0017-9310(77)90052-7
16.
Prabhu
,
S. V.
, and
Mahulikar
,
S. P.
,
2014
, “
Effects of Density and Thermal Conductivity Variations on Entropy Generation in Gas Micro-Flows
,”
Int. J. Heat Mass Transfer
,
79
, pp.
472
485
.10.1016/j.ijheatmasstransfer.2014.07.062
17.
Jha
,
B. K.
, and
Oni
,
M. O.
,
2020
, “
Nonlinear Mixed Convection Flow in an Inclined Channel With Time-Periodic Boundary Conditions
,”
Int. J. Appl. Comput. Math.
,
6
(
5
), p.
129
.10.1007/s40819-020-00880-9
18.
Kameswaran
,
P. K.
,
Vasu
,
B.
,
Murthy
,
P.
, and
Gorla
,
R. S. R.
,
2016
, “
Mixed Convection From a Wavy Surface Embedded in a Thermally Stratified Nanofluid Saturated Porous Medium With Non-Linear Boussinesq Approximation
,”
Int. Commun. Heat Mass Transfer
,
77
, pp.
78
86
.10.1016/j.icheatmasstransfer.2016.07.006
19.
Jha
,
B. K.
, and
Samaila
,
G.
,
2020
, “
Effect of Heat Source/Sink on MHD Free Convection Flow in a Channel Filled With Nanofluid in the Existence of Induced Magnetic Field: An Analytic Approach
,”
SN Appl. Sci.
,
2
(
8
), p.
1321
.10.1007/s42452-020-3139-8
20.
Jha
,
B. K.
, and
Samaila
,
G.
,
2020
, “
Impact of Temperature Dependent Heat Source on MHD Natural Convection Flow Between Two Vertical Plates Filled With Nanofluid With Induced Magnetic Field Effect
,”
Arab J. Basic Appl. Sci.
,
27
(
1
), pp.
299
312
.10.1080/25765299.2020.1806484
21.
Jha
,
B. K.
,
Isah
,
B. Y.
, and
Uwanta
,
I. J.
,
2018
, “
Combined Effect of Suction/Injection on MHD Free-Convection Flow in a Vertical Channel With Thermal Radiation
,”
Ain Shams Eng. J.
,
9
(
4
), pp.
1069
1088
.10.1016/j.asej.2016.06.001
22.
Hossain
,
M. A.
,
Alim
,
M. A.
, and
Rees
,
D. A. S.
,
1999
, “
The Effect of Radiation on Free Convection From a Porous Vertical Plate
,”
Int. J. Heat Mass Transfer
,
42
(
1
), pp.
181
191
.10.1016/S0017-9310(98)00097-0
23.
Rashad
,
A. M.
,
2009
, “
Perturbation Analysis of Radiative Effect on Free Convection Flows in Porous Medium in the Presence of Pressure Work and Viscous Dissipation
,”
Commun. Nonlinear Sci. Numer. Simul.
,
14
(
1
), pp.
140
153
.10.1016/j.cnsns.2007.08.003
24.
Ali Agha
,
H.
,
Bouaziz
,
M. N.
, and
Hanini
,
S.
,
2014
, “
Free Convection Boundary Layer Flow From a Vertical Flat Plate Embedded in a Darcy Porous Medium Filled With a Nanofluid: Effects of Magnetic Field and Thermal Radiation
,”
Arab. J. Sci. Eng.
,
39
(
11
), pp.
8331
8340
.10.1007/s13369-014-1405-z
You do not currently have access to this content.