Abstract

In this article, we review thermal transport in polymers with different morphologies from aligned fibers to bulk amorphous states. We survey early and recent efforts in engineering polymers with high thermal conductivity by fabricating polymers with large-scale molecular alignments. The experimentally realized extremely high thermal conductivity of polymer nanofibers is highlighted, and understanding of thermal transport physics is discussed. We then transition to the discussion of bulk amorphous polymers with an emphasis on the physics of thermal transport and its relation with the conformation of molecular chains in polymers. We also discuss the current understanding of how the chemistry of polymers would influence thermal transport in amorphous polymers and some limited, but important chemistry-structure-property relationships. Lastly, challenges, perspectives, and outlook of this field are presented. We hope this review will inspire more fundamental and applied research in the polymer thermal transport field to advance scientific understanding and engineering applications.

References

1.
Wong
,
C.
,
2013
,
Polymers for Electronic & Photonic Application
,
Elsevier
, New York.
2.
Prasher
,
R.
,
2006
, “
Thermal Interface Materials: Historical Perspective, Status, and Future Directions
,”
Proc. IEEE
,
94
(
8
), pp.
1571
1586
.10.1109/JPROC.2006.879796
3.
Chen
,
X.
,
Su
,
Y.
,
Reay
,
D.
, and
Riffat
,
S.
,
2016
, “
Recent Research Developments in Polymer Heat Exchangers–a Review
,”
Renewable Sustainable Energy Rev.
,
60
, pp.
1367
1386
.10.1016/j.rser.2016.03.024
4.
Shen
,
S.
,
Henry
,
A.
,
Tong
,
J.
,
Zheng
,
R.
, and
Chen
,
G.
,
2010
, “
Polyethylene Nanofibres With Very High Thermal Conductivities
,”
Nat. Nanotechnol.
,
5
(
4
), pp.
251
255
.10.1038/nnano.2010.27
5.
Canetta
,
C.
,
Guo
,
S.
, and
Narayanaswamy
,
A.
,
2014
, “
Measuring Thermal Conductivity of Polystyrene Nanowires Using the Dual-Cantilever Technique
,”
Rev. Sci. Instrum.
,
85
(
10
), p.
104901
.10.1063/1.4896330
6.
Zhong
,
Z.
,
Wingert
,
M. C.
,
Strzalka
,
J.
,
Wang
,
H.-H.
,
Sun
,
T.
,
Wang
,
J.
,
Chen
,
R.
, and
Jiang
,
Z.
,
2014
, “
Structure-Induced Enhancement of Thermal Conductivities in Electrospun Polymer Nanofibers
,”
Nanoscale
,
6
(
14
), pp.
8283
8291
.10.1039/C4NR00547C
7.
Singh
,
V.
,
Bougher
,
T. L.
,
Weathers
,
A.
,
Cai
,
Y.
,
Bi
,
K.
,
Pettes
,
M. T.
,
McMenamin
,
S. A.
,
Lv
,
W.
,
Resler
,
D. P.
,
Gattuso
,
T. R.
,
Altman
,
D. H.
,
Sandhage
,
K. H.
,
Shi
,
L.
,
Henry
,
A.
, and
Cola
,
B. A.
,
2014
, “
High Thermal Conductivity of Chain-Oriented Amorphous Polythiophene
,”
Nat. Nano
,
9
(
5
), pp.
384
390
.10.1038/nnano.2014.44
8.
Huang
,
X.
,
Zhi
,
C.
,
Jiang
,
P.
,
Golberg
,
D.
,
Bando
,
Y.
, and
Tanaka
,
T.
,
2013
, “
Polyhedral Oligosilsesquioxane-Modified Boron Nitride Nanotube Based Epoxy Nanocomposites: An Ideal Dielectric Material With High Thermal Conductivity
,”
Adv. Funct. Mater.
,
23
(
14
), pp.
1824
1831
.10.1002/adfm.201201824
9.
Ganguli
,
S.
,
Roy
,
A. K.
, and
Anderson
,
D. P.
,
2008
, “
Improved Thermal Conductivity for Chemically Functionalized Exfoliated Graphite/Epoxy Composites
,”
Carbon
,
46
(
5
), pp.
806
817
.10.1016/j.carbon.2008.02.008
10.
Kim
,
G.-H.
,
Lee
,
D.
,
Shanker
,
A.
,
Shao
,
L.
,
Kwon
,
M. S.
,
Gidley
,
D.
,
Kim
,
J.
, and
Pipe
,
K. P.
,
2015
, “
High Thermal Conductivity in Amorphous Polymer Blends by Engineered Interchain Interactions
,”
Nat. Mater.
,
14
(
3
), pp.
295
300
.10.1038/nmat4141
11.
Shrestha
,
R.
,
Li
,
P.
,
Chatterjee
,
B.
,
Zheng
,
T.
,
Wu
,
X.
,
Liu
,
Z.
,
Luo
,
T.
,
Choi
,
S.
,
Hippalgaonkar
,
K.
,
de Boer
,
M. P.
, and
Shen
,
S.
,
2018
, “
Crystalline Polymer Nanofibers With Ultra-High Strength and Thermal Conductivity
,”
Nat. Commun.
,
9
(
1
), p.
1664
.10.1038/s41467-018-03978-3
12.
Shrestha
,
R.
,
Luan
,
Y.
,
Shin
,
S.
,
Zhang
,
T.
,
Luo
,
X.
,
Lundh
,
J. S.
,
Gong
,
W.
,
Bockstaller
,
M. R.
,
Choi
,
S.
,
Luo
,
T.
,
Chen
,
R.
,
Hippalgaonkar
,
K.
, and
Shen
,
S.
,
2019
, “
High-Contrast and Reversible Polymer Thermal Regulator by Structural Phase Transition
,”
Sci. Adv.
,
5
(
12
), p.
eaax3777
.10.1126/sciadv.aax3777
13.
Zhang
,
T.
, and
Luo
,
T.
,
2012
, “
Morphology-Influenced Thermal Conductivity of Polyethylene Single Chains and Crystalline Fibers
,”
J Appl Phys
,
112
(
9
), p.
094304
.10.1063/1.4759293
14.
Liu
,
J.
, and
Yang
,
R.
,
2010
, “
Tuning the Thermal Conductivity of Polymers With Mechanical Strains
,”
Phys. Rev. B
,
81
(
17
), p.
174122
.10.1103/PhysRevB.81.174122
15.
Luo
,
T.
, and
Chen
,
G.
,
2013
, “
Nanoscale Heat Transfer - From Computation to Experiment
,”
Phys. Chem. Chem. Phys.
,
15
(
10
), pp.
3389
3412
.10.1039/c2cp43771f
16.
Wang
,
X.
,
Ho
,
V.
,
Segalman
,
R. A.
, and
Cahill
,
D. G.
,
2013
, “
Thermal Conductivity of High-Modulus Polymer Fibers
,”
Macromolecules
,
46
(
12
), pp.
4937
4943
.10.1021/ma400612y
17.
Mamunya
,
Y. P.
,
Davydenko
,
V. V.
,
Pissis
,
P.
, and
Lebedev
,
E. V.
,
2002
, “
Electrical and Thermal Conductivity of Polymers Filled With Metal Powders
,”
Eur. Polym. J.
,
38
(
9
), pp.
1887
1897
.10.1016/S0014-3057(02)00064-2
18.
Han
,
Z.
, and
Fina
,
A.
,
2011
, “
Thermal Conductivity of Carbon Nanotubes and Their Polymer Nanocomposites: A Review
,”
Prog. Polym. Sci.
,
36
(
7
), pp.
914
944
.10.1016/j.progpolymsci.2010.11.004
19.
Krupa
,
I.
,
Novák
,
I.
, and
Chodák
,
I.
,
2004
, “
Electrically and Thermally Conductive Polyethylene/Graphite Composites and Their Mechanical Properties
,”
Synth. Met.
,
145
(
2–3
), pp.
245
252
.10.1016/j.synthmet.2004.05.007
20.
Wong
,
C.
, and
Bollampally
,
R. S.
,
1999
, “
Thermal Conductivity, Elastic Modulus, and Coefficient of Thermal Expansion of Polymer Composites Filled With Ceramic Particles for Electronic Packaging
,”
J. Appl. Polym. Sci.
,
74
(
14
), pp.
3396
3403
.10.1002/(SICI)1097-4628(19991227)74:14<3396::AID-APP13>3.0.CO;2-3
21.
Kim
,
W.
,
Bae
,
J.-W.
,
Choi
,
I.-D.
, and
Kim
,
Y.-S.
,
1999
, “
Thermally Conductive EMC (Epoxy Molding Compound) for Microelectronic Encapsulation
,”
Polym. Eng. Sci.
,
39
(
4
), pp.
756
766
.10.1002/pen.11464
22.
O'Brien
,
P. J.
,
Shenogin
,
S.
,
Liu
,
J.
,
Chow
,
P. K.
,
Laurencin
,
D.
,
Mutin
,
P. H.
,
Yamaguchi
,
M.
,
Keblinski
,
P.
, and
Ramanath
,
G.
,
2013
, “
Bonding-Induced Thermal Conductance Enhancement at Inorganic Heterointerfaces Using Nanomolecular Monolayers
,”
Nat. Mater.
,
12
(
2
), pp.
118
122
.10.1038/nmat3465
23.
Luo
,
T. F.
, and
Lloyd
,
J. R.
,
2012
, “
Enhancement of Thermal Energy Transport Across Graphene/Graphite and Polymer Interfaces - A Molecular Dynamics Study
,”
Adv. Funct. Mater.
,
22
(
12
), pp.
2495
2502
.10.1002/adfm.201103048
24.
Luo
,
T. F.
, and
Lloyd
,
J. R.
,
2011
, “
Molecular Dynamics Study of Thermal Transport in GaAs-Self-Assembly Monolayer-GaAs Junctions With Ab Initio Characterization of Thiol-GaAs Bonds
,”
J. Appl. Phys.
,
109
(
3
), p.
034301
.10.1063/1.3530685
25.
Teng
,
C.-C.
,
Ma
,
C.-C. M.
,
Lu
,
C.-H.
,
Yang
,
S.-Y.
,
Lee
,
S.-H.
,
Hsiao
,
M.-C.
,
Yen
,
M.-Y.
,
Chiou
,
K.-C.
, and
Lee
,
T.-M.
,
2011
, “
Thermal Conductivity and Structure of Non-Covalent Functionalized Graphene/Epoxy Composites
,”
Carbon
,
49
(
15
), pp.
5107
5116
.10.1016/j.carbon.2011.06.095
26.
Shenogina
,
N.
,
Godawat
,
R.
,
Keblinski
,
P.
, and
Garde
,
S.
,
2009
, “
How Wetting and Adhesion Affect Thermal Conductance of a Range of Hydrophobic to Hydrophilic Aqueous Interfaces
,”
Phys. Rev. Lett.
,
102
(
15
), p.
156101
.10.1103/PhysRevLett.102.156101
27.
Harikrishna
,
H.
,
Ducker
,
W. A.
, and
Huxtable
,
S. T.
,
2013
, “
The Influence of Interface Bonding on Thermal Transport Through Solid–Liquid Interfaces
,”
Appl. Phys. Lett.
,
102
(
25
), p.
251606
.10.1063/1.4812749
28.
Zhang
,
T.
,
Gans-Forrest
,
A. R.
,
Lee
,
E.
,
Zhang
,
X.
,
Qu
,
C.
,
Pang
,
Y.
,
Sun
,
F.
, and
Luo
,
T.
,
2016
, “
Role of Hydrogen Bonds in Thermal Transport Across Hard/Soft Material Interfaces
,”
ACS Appl. Mater. Interfaces
,
8
(
48
), pp.
33326
33334
.10.1021/acsami.6b12073
29.
Zhang
,
L.
,
Chen
,
T.
,
Ban
,
H.
, and
Liu
,
L.
,
2014
, “
Hydrogen Bonding-Assisted Thermal Conduction in β-Sheet Crystals of Spider Silk Protein
,”
Nanoscale
,
6
(
14
), pp.
7786
7791
.10.1039/c4nr01195c
30.
Wei
,
X.
,
Zhang
,
T.
, and
Luo
,
T.
,
2017
, “
Thermal Energy Transport Across Hard–Soft Interfaces
,”
ACS Energy Lett.
,
2
(
10
), pp.
2283
2292
.10.1021/acsenergylett.7b00570
31.
Sun
,
F.
,
Zhang
,
T.
,
Jobbins
,
M. M.
,
Guo
,
Z.
,
Zhang
,
X.
,
Zheng
,
Z.
,
Tang
,
D.
,
Ptasinska
,
S.
, and
Luo
,
T.
,
2014
, “
Molecular Bridge for Significantly Enhanced Thermal Transport Across Hard-Soft Material Interfaces
,”
Adv. Mater.
,
26
(
35
), pp.
6093
6093
.10.1002/adma.201400954
32.
Henry
,
A.
,
2014
, “
Thermal Transport in Polymers
,”
Annu. Rev. Heat Transfer
,
17
(
N/A
), pp.
485
520
.10.1615/AnnualRevHeatTransfer.2013006949
33.
Chen
,
H.
,
Ginzburg
,
V. V.
,
Yang
,
J.
,
Yang
,
Y.
,
Liu
,
W.
,
Huang
,
Y.
,
Du
,
L.
, and
Chen
,
B.
,
2016
, “
Thermal Conductivity of Polymer-Based Composites: Fundamentals and Applications
,”
Prog. Polym. Sci.
,
59
, pp.
41
85
.10.1016/j.progpolymsci.2016.03.001
34.
Mehra
,
N.
,
Mu
,
L.
,
Ji
,
T.
,
Yang
,
X.
,
Kong
,
J.
,
Gu
,
J.
, and
Zhu
,
J.
,
2018
, “
Thermal Transport in Polymeric Materials and Across Composite Interfaces
,”
Appl. Mater. Today
,
12
, pp.
92
130
.10.1016/j.apmt.2018.04.004
35.
Xu
,
X.
,
Chen
,
J.
,
Zhou
,
J.
, and
Li
,
B.
,
2018
, “
Thermal Conductivity of Polymers and Their Nanocomposites
,”
Adv. Mater.
,
30
(
17
), p.
1705544
.10.1002/adma.201705544
36.
Huang
,
C.
,
Qian
,
X.
, and
Yang
,
R.
,
2018
, “
Thermal Conductivity of Polymers and Polymer Nanocomposites
,”
Mater. Sci. Eng. R. Rep.
,
132
, pp.
1
22
.10.1016/j.mser.2018.06.002
37.
Yang
,
X.
,
Liang
,
C.
,
Ma
,
T.
,
Guo
,
Y.
,
Kong
,
J.
,
Gu
,
J.
,
Chen
,
M.
, and
Zhu
,
J.
,
2018
, “
A Review on Thermally Conductive Polymeric Composites: Classification, Measurement, Model and Equations, Mechanism and Fabrication Methods
,”
Adv. Compos. Hybrid Mater.
,
1
(
2
), pp.
207
230
.10.1007/s42114-018-0031-8
38.
Choy
,
C. L.
,
Wong
,
Y. W.
,
Yang
,
G. W.
, and
Kanamoto
,
T.
,
1999
, “
Elastic Modulus and Thermal Conductivity of Ultradrawn Polyethylene
,”
J. Polym. Sci. Part B Polym. Phys.
,
37
(
23
), pp.
3359
3367
.10.1002/(SICI)1099-0488(19991201)37:23<3359::AID-POLB11>3.0.CO;2-S
39.
Henry
,
A.
, and
Chen
,
G.
,
2008
, “
High Thermal Conductivity of Single Polyethylene Chains Using Molecular Dynamics Simulations
,”
Phys. Rev. Lett.
,
101
(
23
), p.
235502
.10.1103/PhysRevLett.101.235502
40.
Fermi
,
E.
,
Pasta
,
J.
, and
Ulam
,
S.
,
1955
, “
Studies of Nonlinear Problems. I
,” Los Alamos Scientific Lab., New Mexico, Report No. LA-1940.
41.
Hu
,
B.
,
Li
,
B.
, and
Zhao
,
H.
,
1998
, “
Heat Conduction in One-Dimensional Chains
,”
Phys. Rev. E
,
57
(
3
), pp.
2992
2995
.10.1103/PhysRevE.57.2992
42.
Lepri
,
S.
,
Livi
,
R.
, and
Politi
,
A.
,
1997
, “
Heat Conduction in Chains of Nonlinear Oscillators
,”
Phys. Rev. Lett.
,
78
(
10
), pp.
1896
1899
.10.1103/PhysRevLett.78.1896
43.
Lepri
,
S.
,
Livi
,
R.
, and
Politi
,
A.
,
2003
, “
Thermal Conduction in Classical Low-Dimensional Lattices
,”
Phys. Rep.
,
377
(
1
), pp.
1
80
.10.1016/S0370-1573(02)00558-6
44.
Dhar
,
A.
,
2008
, “
Heat Transport in Low-Dimensional Systems
,”
Adv. Phys.
,
57
(
5
), pp.
457
537
.10.1080/00018730802538522
45.
Liu
,
S.
,
Xu
,
X. F.
,
Xie
,
R. G.
,
Zhang
,
G.
, and
Li
,
B. W.
,
2012
, “
Anomalous Heat Conduction and Anomalous Diffusion in Low Dimensional Nanoscale Systems
,”
Eur. Phys. J. B
,
85
(
10
), p.
337
.10.1140/epjb/e2012-30383-8
46.
Prosen
,
T.
, and
Campbell
,
D. K.
,
2000
, “
Momentum Conservation Implies Anomalous Energy Transport in 1D Classical Lattices
,”
Phys. Rev. Lett.
,
84
(
13
), pp.
2857
2860
.10.1103/PhysRevLett.84.2857
47.
Hu
,
B.
,
Li
,
B.
, and
Zhao
,
H.
,
2000
, “
Heat Conduction in One-Dimensional Nonintegrable Systems
,”
Phys. Rev. E
,
61
(
4
), pp.
3828
3831
.10.1103/PhysRevE.61.3828
48.
Zhang
,
Z.
,
Ouyang
,
Y.
,
Cheng
,
Y.
,
Chen
,
J.
,
Li
,
N.
, and
Zhang
,
G.
,
2020
, “
Size-Dependent Phononic Thermal Transport in Low-Dimensional Nanomaterials
,”
Phys. Rep.
,
860
, pp.
1
26
.10.1016/j.physrep.2020.03.001
49.
Liu
,
S.
,
Hanggi
,
P.
, and
Li
,
N.
,
2014
, “
Anomalous Heat Diffusion
,”
Phys. Rev. Lett.
,
112
(
4
), p.
040601
.10.1103/PhysRevLett.112.040601
50.
Tian
,
Z.
,
Lee
,
S.
, and
Chen
,
G.
,
2013
, “
Heat Transfer in Thermoelectric Materials and Devices
,”
ASME J. Heat Transfer
,
135
(
6
), p.
061605
.10.1115/1.4023585
51.
Liu
,
J.
, and
Yang
,
R.
,
2012
, “
Length-Dependent Thermal Conductivity of Single Extended Polymer Chains
,”
Phys. Rev. B
,
86
(
10
), p.
104307
.10.1103/PhysRevB.86.104307
52.
Luo
,
T.
,
Esfarjani
,
K.
,
Shiomi
,
J.
,
Henry
,
A.
, and
Chen
,
G.
,
2011
, “
Molecular Dynamics Simulation of Thermal Energy Transport in Polydimethylsiloxane (PDMS)
,”
J. Appl. Phys.
,
109
(
7
), p.
074321
.10.1063/1.3569862
53.
Henry
,
A.
, and
Chen
,
G.
,
2009
, “
Anomalous Heat Conduction in Polyethylene Chains: Theory and Molecular Dynamics Simulations
,”
Phys. Rev. B
,
79
(
14
), p.
144305
.10.1103/PhysRevB.79.144305
54.
Ma
,
H.
, and
Tian
,
Z.
,
2019
, “
Chain Rotation Significantly Reduces Thermal Conductivity of Single-Chain Polymers
,”
J. Mater. Res.
,
34
(
1
), pp.
126
133
.10.1557/jmr.2018.362
55.
Zhang
,
T.
,
Wu
,
X.
, and
Luo
,
T.
,
2014
, “
Polymer Fibers With Outstanding Thermal Conductivity and Thermal Stability: Fundamental Linkage Between Molecular Characteristics and Macroscopic Thermal Properties
,”
J. Phys. Chem. C
,
118
(
36
), pp.
21148
21148
.10.1021/jp5051639
56.
Wang
,
X.
,
Kaviany
,
M.
, and
Huang
,
B.
,
2017
, “
Phonon Coupling and Transport in Individual Polyethylene Chains: A Comparison Study With the Bulk Crystal
,”
Nanoscale
,
9
(
45
), pp.
18022
18031
.10.1039/C7NR06216H
57.
Jiang
,
J.-W.
,
Zhao
,
J.
,
Zhou
,
K.
, and
Rabczuk
,
T.
,
2012
, “
Superior Thermal Conductivity and Extremely High Mechanical Strength in Polyethylene Chains From Ab Initio Calculation
,”
J. Appl. Phys.
,
111
(
12
), p.
124304
.10.1063/1.4729489
58.
Utimula
,
K.
,
Ichibha
,
T.
,
Maezono
,
R.
, and
Hongo
,
K.
,
2019
, “
Ab Initio Search of Polymer Crystals With High Thermal Conductivity
,”
Chem. Mater.
,
31
(
13
), pp.
4649
4656
.10.1021/acs.chemmater.9b00020
59.
Shulumba
,
N.
,
Hellman
,
O.
, and
Minnich
,
A. J.
,
2017
, “
Lattice Thermal Conductivity of Polyethylene Molecular Crystals From First-Principles Including Nuclear Quantum Effects
,”
Phys. Rev. Lett.
,
119
(
18
), p.
185901
.10.1103/PhysRevLett.119.185901
60.
Cheng
,
P.
,
Shulumba
,
N.
, and
Minnich
,
A. J.
,
2019
, “
Thermal Transport and Phonon Focusing in Complex Molecular Crystals: Ab Initio Study of Polythiophene
,”
Phys. Rev. B
,
100
(
9
), p.
094306
.10.1103/PhysRevB.100.094306
61.
Henry
,
A.
,
Chen
,
G.
,
Plimpton
,
S. J.
, and
Thompson
,
A.
,
2010
, “
1D-to-3D Transition of Phonon Heat Conduction in Polyethylene Using Molecular Dynamics Simulations
,”
Phys. Rev. B
,
82
(
14
), p.
144308
.10.1103/PhysRevB.82.144308
62.
Henry
,
A.
, and
Chen
,
G.
,
2009
, “
Explicit Treatment of Hydrogen Atoms in Thermal Simulations of Polyethylene
,”
Nanoscale Microscale Thermophys. Eng.
,
13
(
2
), pp.
99
108
.10.1080/15567260902834707
63.
Lu
,
T.
,
Kim
,
K.
,
Li
,
X.
,
Zhou
,
J.
,
Chen
,
G.
, and
Liu
,
J.
,
2018
, “
Thermal Transport in Semicrystalline Polyethylene by Molecular Dynamics Simulation
,”
J. Appl. Phys.
,
123
(
1
), p.
015107
.10.1063/1.5006889
64.
Zhang
,
T.
, and
Luo
,
T.
,
2015
, “
Giant Thermal Rectification From Polyethylene Nanofiber Thermal Diodes
,”
Small
,
11
(
36
), pp.
4657
4665
.10.1002/smll.201501127
65.
Zhang
,
T.
, and
Luo
,
T.
,
2013
, “
High-Contrast, Reversible Thermal Conductivity Regulation Utilizing the Phase Transition of Polyethylene Nanofibers
,”
ACS Nano
,
7
(
9
), pp.
7592
7600
.10.1021/nn401714e
66.
Liao
,
Q.
,
Zeng
,
L.
,
Liu
,
Z.
, and
Liu
,
W.
,
2016
, “
Tailoring Thermal Conductivity of Single-Stranded Carbon-Chain Polymers Through Atomic Mass Modification
,”
Sci. Rep.
,
6
(
1
), p.
34999
.10.1038/srep34999
67.
MullerPlathe
,
F.
, and
Müller Plathe
,
F.
,
1997
, “
A Simple Nonequilibrium Molecular Dynamics Method for Calculating the Thermal Conductivity
,”
J. Chem. Phys.
,
106
(
14
), pp.
6082
6085
.10.1063/1.473271
68.
Sellan
,
D. P.
,
Landry
,
E. S.
,
Turney
,
J. E.
,
McGaughey
,
A. J. H.
, and
Amon
,
C. H.
,
2010
, “
Size Effects in Molecular Dynamics Thermal Conductivity Predictions
,”
Phys. Rev. B
,
81
(
21
), p.
214305
.10.1103/PhysRevB.81.214305
69.
Schelling
,
P. K.
,
Phillpot
,
S. R.
, and
Keblinski
,
P.
,
2002
, “
Comparison of Atomic-Level Simulation Methods for Computing Thermal Conductivity
,”
Phys. Rev. B
,
65
(
14
), p.
144306
.10.1103/PhysRevB.65.144306
70.
Chen
,
J.
,
Zhang
,
G.
, and
Li
,
B.
,
2010
, “
Molecular Dynamics Simulations of Heat Conduction in Nanostructures: Effect of Heat Bath
,”
J. Phys. Soc. Jpn.
,
79
(
7
), p.
074604
.10.1143/JPSJ.79.074604
71.
Li
,
Z.
,
Xiong
,
S.
,
Sievers
,
C.
,
Hu
,
Y.
,
Fan
,
Z.
,
Wei
,
N.
,
Bao
,
H.
,
Chen
,
S.
,
Donadio
,
D.
, and
Ala-Nissila
,
T.
,
2019
, “
Influence of Thermostatting on Nonequilibrium Molecular Dynamics Simulations of Heat Conduction in Solids
,”
J. Chem. Phys.
,
151
(
23
), p.
234105
.10.1063/1.5132543
72.
Fillipov
,
A.
,
Hu
,
B.
,
Li
,
B.
, and
Zeltser
,
A.
,
1998
, “
Energy Transport Between Two Attractors Connected by a Fermi-Pasta-Ulam Chain
,”
J. Phys. A Math. Gen.
,
31
(
38
), pp.
7719
7728
.10.1088/0305-4470/31/38/008
73.
Hünenberger
,
P. H.
,
2005
,
Advanced Computer Simulation
,
Springer
, New York, pp.
105
149
.
74.
Feng
,
T.
,
He
,
J.
, and
Rai
,
A.
,
2020
, “
Size Effects in the Thermal Conductivity of Amorphous Polymers
,”
Phys. Rev. Appl.
,
14
(
4
), p.
044023
.10.1103/PhysRevApplied.14.044023
75.
Lin
,
S.
,
Cai
,
Z.
,
Wang
,
Y.
,
Zhao
,
L.
, and
Zhai
,
C.
,
2019
, “
Tailored Morphology and Highly Enhanced Phonon Transport in Polymer Fibers: A Multiscale Computational Framework
,”
NPJ Comput. Mater.
,
5
(
1
), p.
126
.10.1038/s41524-019-0264-2
76.
Stuart
,
S. J.
,
Tutein
,
A. B.
, and
Harrison
,
J. A.
,
2000
, “
A Reactive Potential for Hydrocarbons With Intermolecular Interactions
,”
J. Chem. Phys.
,
112
(
14
), pp.
6472
6486
.10.1063/1.481208
77.
Kirkwood
,
J. G.
,
1939
, “
The Skeletal Modes of Vibration of Long Chain Molecules
,”
J. Chem. Phys.
,
7
(
7
), pp.
506
509
.10.1063/1.1750479
78.
Sun
,
H.
,
Mumby
,
S. J.
,
Maple
,
J. R.
, and
Hagler
,
A. T.
,
1994
, “
An Ab Initio CFF93 all-Atom Force Field for Polycarbonates
,”
J. Am. Chem. Soc.
,
116
(
7
), pp.
2978
2987
.10.1021/ja00086a030
79.
Sun
,
H.
,
Ren
,
P.
, and
Fried
,
J. R.
,
1998
, “
The Compass Force Field: Parameterization and Validation for Phosphazenes
,”
Comput. Theor. Polym. Sci.
,
8
(
1–2
), pp.
229
246
.10.1016/S1089-3156(98)00042-7
80.
Fried
,
J. R.
,
Ren
,
P.
, and
Sun
,
H.
,
1998
, “
Parameterization and Validation of the Compass Force Field for Polyphosphazenes
,”
Abstr. Papers Am. Chem. Soc.
,
215
, pp.
U346
U346
.
81.
Sun
,
H.
,
1998
, “
COMPASS: An Ab Initio Force-Field Optimized for Condensed-Phase Applications—Overview With Details on Alkane and Benzene Compounds
,”
J. Phys. Chem. B
,
102
(
38
), pp.
7338
7364
.10.1021/jp980939v
82.
Ma
,
H.
,
Ma
,
Y.
, and
Tian
,
Z.
,
2019
, “
Simple Theoretical Model for Thermal Conductivity of Crystalline Polymers
,”
ACS Appl. Polym. Mater.
,
1
(
10
), pp.
2566
2570
.10.1021/acsapm.9b00605
83.
Sadeghi
,
M. M.
,
Pettes
,
M. T.
, and
Shi
,
L.
,
2012
, “
Thermal Transport in Graphene
,”
Solid State Commun.
,
152
(
15
), pp.
1321
1330
.10.1016/j.ssc.2012.04.022
84.
Li
,
P.
,
Yang
,
S.
,
Zhang
,
T.
,
Shrestha
,
R.
,
Hippalgaonkar
,
K.
,
Luo
,
T.
,
Zhang
,
X.
, and
Shen
,
S.
,
2016
, “
Tunable Thermal Transport in Polysilsesquioxane (PSQ) Hybrid Crystals
,”
Sci. Rep.
,
6
(
1
), p.
21452
.10.1038/srep21452
85.
Dong
,
L.
,
Xi
,
Q.
,
Chen
,
D.
,
Guo
,
J.
,
Nakayama
,
T.
,
Li
,
Y.
,
Liang
,
Z.
,
Zhou
,
J.
,
Xu
,
X.
, and
Li
,
B.
,
2018
, “
Dimensional Crossover of Heat Conduction in Amorphous Polyimide Nanofibers
,”
Natl. Sci. Rev.
,
5
(
4
), pp.
500
506
.10.1093/nsr/nwy004
86.
Fujishiro
,
H.
,
Ikebe
,
M.
,
Kashima
,
T.
, and
Yamanaka
,
A.
,
1997
, “
Thermal Conductivity and Diffusivity of High-Strength Polymer Fibers
,”
Jpn. J. Appl. Phys.
,
36
(
Part 1, No. 9A
), pp.
5633
5637
.10.1143/JJAP.36.5633
87.
Lu
,
Y.
,
Liu
,
J.
,
Xie
,
X.
, and
Cahill
,
D. G.
,
2016
, “
Thermal Conductivity in the Radial Direction of Deformed Polymer Fibers
,”
ACS Macro Lett.
,
5
(
6
), pp.
646
650
.10.1021/acsmacrolett.6b00048
88.
Cui
,
L.
,
Hur
,
S.
,
Akbar
,
Z. A.
,
Klöckner
,
J. C.
,
Jeong
,
W.
,
Pauly
,
F.
,
Jang
,
S.-Y.
,
Reddy
,
P.
, and
Meyhofer
,
E.
,
2019
, “
Thermal Conductance of Single-Molecule Junctions
,”
Nature
,
572
(
7771
), pp.
628
633
.10.1038/s41586-019-1420-z
89.
Gupta
,
B.
,
Revagade
,
N.
, and
Hilborn
,
J.
,
2007
, “
Poly(Lactic Acid) Fiber: An Overview
,”
Prog. Polym. Sci.
,
32
(
4
), pp.
455
482
.10.1016/j.progpolymsci.2007.01.005
90.
Ma
,
J.
,
Zhang
,
Q.
,
Mayo
,
A.
,
Ni
,
Z.
,
Yi
,
H.
,
Chen
,
Y.
,
Mu
,
R.
,
Bellan
,
L. M.
, and
Li
,
D.
,
2015
, “
Thermal Conductivity of Electrospun Polyethylene Nanofibers
,”
Nanoscale
,
7
(
40
), pp.
16899
16908
.10.1039/C5NR04995D
91.
Guo
,
Y.
,
Yang
,
X.
,
Ruan
,
K.
,
Kong
,
J.
,
Dong
,
M.
,
Zhang
,
J.
,
Gu
,
J.
, and
Guo
,
Z.
,
2019
, “
Reduced Graphene Oxide Heterostructured Silver Nanoparticles Significantly Enhanced Thermal Conductivities in Hot-Pressed Electrospun Polyimide Nanocomposites
,”
ACS Appl. Mater. Interfaces
,
11
(
28
), pp.
25465
25473
.10.1021/acsami.9b10161
92.
Khan
,
W. S.
,
Asmatulu
,
R.
,
Rodriguez
,
V.
, and
Ceylan
,
M.
,
2014
, “
Enhancing Thermal and Ionic Conductivities of Electrospun PAN and PMMA Nanofibers by Graphene Nanoflake Additions for Battery‐Separator Applications
,”
Int. J. Energy Res.
,
38
(
15
), pp.
2044
2051
.10.1002/er.3188
93.
Smith
,
M. K.
,
Bougher
,
T. L.
,
Kalaitzidou
,
K.
, and
Cola
,
B. A.
,
2017
, “
Melt-Processed P3HT and PE Polymer Nanofiber Thermal Conductivity
,”
MRS Adv.
,
2
(
58–59
), pp.
3619
3626
.10.1557/adv.2017.499
94.
Chien
,
H.-C.
,
Peng
,
W.-T.
,
Chiu
,
T.-H.
,
Wu
,
P.-H.
,
Liu
,
Y.-J.
,
Tu
,
C.-W.
,
Wang
,
C.-L.
, and
Lu
,
M.-C.
,
2020
, “
Heat Transfer of Semicrystalline Nylon Nanofibers
,”
ACS Nano
,
14
(
3
), pp.
2939
2946
.10.1021/acsnano.9b07493
95.
Zhang
,
Q.
,
2017
, “
Thermal Transport in Individual Nanowires of Fine Structures
,” Ph.D. thesis,
Vanderbilt University
, Nashville, TN.
96.
Imura
,
Y.
,
Hogan
,
R.
, and
Jaffe
,
M.
,
2014
,
Advances in Filament Yarn Spinning of Textiles and Polymers
,
Elsevier
, New York, pp.
187
202
.
97.
Shi
,
A.
,
Li
,
Y.
,
Liu
,
W.
,
Lei
,
J.
, and
Li
,
Z.-M.
,
2019
, “
High Thermal Conductivity of Chain-Aligned Bulk Linear Ultra-High Molecular Weight Polyethylene
,”
J. Appl. Phys.
,
125
(
24
), p.
245110
.10.1063/1.5108520
98.
Choy
,
C. L.
,
Fei
,
Y.
, and
Xi
,
T. G.
,
1993
, “
Thermal Conductivity of Gel-Spun Polyethylene Fibers
,”
J. Polym. Sci. Part B Polym. Phys.
,
31
(
3
), pp.
365
370
.10.1002/polb.1993.090310315
99.
Shi
,
Q.
,
Vitchuli
,
N.
,
Ji
,
L.
,
Nowak
,
J.
,
McCord
,
M.
,
Bourham
,
M.
, and
Zhang
,
X.
,
2011
, “
A Facile Approach to Fabricate Porous Nylon 6 Nanofibers Using Silica Nanotemplate
,”
J. Appl. Polym. Sci.
,
120
(
1
), pp.
425
433
.10.1002/app.33161
100.
Hoang
,
X. T.
,
Nguyen
,
D. T.
,
Dong
,
B. C.
, and
Nguyen
,
H. N.
,
2013
, “
Fabrication of Carbon Nanostructures From Polymeric Precursor by Using Anodic Aluminum Oxide (AAO) Nanotemplates
,”
Adv. Nat. Sci. Nanosci. Nanotechnol.
,
4
(
3
), p.
035013
.10.1088/2043-6262/4/3/035013
101.
Xu
,
Y.
,
Wang
,
X.
,
Zhou
,
J.
,
Song
,
B.
,
Jiang
,
Z.
,
Lee
,
E. M. Y.
,
Huberman
,
S.
,
Gleason
,
K. K.
, and
Chen
,
G.
,
2018
, “
Molecular Engineered Conjugated Polymer With High Thermal Conductivity
,”
Sci. Adv.
,
4
(
3
), p.
eaar3031
.10.1126/sciadv.aar3031
102.
Weathers
,
A.
,
Matsushita
,
S.
,
Pettes
,
M. T.
,
Goh
,
M.
,
Akagi
,
K.
, and
Shi
,
L.
,
2013
, “
Iodine Doping Effects on the Lattice Thermal Conductivity of Oxidized Polyacetylene Nanofibers
,”
J. Appl. Phys.
,
114
(
19
), p.
194302
.10.1063/1.4831945
103.
Cao
,
B.-Y.
,
Li
,
Y.-W.
,
Kong
,
J.
,
Chen
,
H.
,
Xu
,
Y.
,
Yung
,
K.-L.
, and
Cai
,
A.
,
2011
, “
High Thermal Conductivity of Polyethylene Nanowire Arrays Fabricated by an Improved Nanoporous Template Wetting Technique
,”
Polymer
,
52
(
8
), pp.
1711
1715
.10.1016/j.polymer.2011.02.019
104.
Zhu
,
B.
,
Liu
,
J.
,
Wang
,
T.
,
Han
,
M.
,
Valloppilly
,
S.
,
Xu
,
S.
, and
Wang
,
X.
,
2017
, “
Novel Polyethylene Fibers of Very High Thermal Conductivity Enabled by Amorphous Restructuring
,”
ACS Omega
,
2
(
7
), pp.
3931
3944
.10.1021/acsomega.7b00563
105.
Ronca
,
S.
,
Igarashi
,
T.
,
Forte
,
G.
, and
Rastogi
,
S.
,
2017
, “
Metallic-Like Thermal Conductivity in a Lightweight Insulator: Solid-State Processed Ultra High Molecular Weight Polyethylene Tapes and Films
,”
Polymer
,
123
, pp.
203
210
.10.1016/j.polymer.2017.07.027
106.
Xu
,
Y.
,
Kraemer
,
D.
,
Song
,
B.
,
Jiang
,
Z.
,
Zhou
,
J.
,
Loomis
,
J.
,
Wang
,
J.
,
Li
,
M.
,
Ghasemi
,
H.
,
Huang
,
X.
,
Li
,
X.
, and
Chen
,
G.
,
2019
, “
Nanostructured Polymer Films With Metal-Like Thermal Conductivity
,”
Nat. Commun.
,
10
(
1
), p.
1771
.10.1038/s41467-019-09697-7
107.
Zhang
,
T.
, and
Luo
,
T.
,
2016
, “
Role of Chain Morphology and Stiffness in Thermal Conductivity of Amorphous Polymers
,”
J. Phys. Chem. B
,
120
(
4
), pp.
803
812
.10.1021/acs.jpcb.5b09955
108.
Zhu
,
B.
,
2018
, “
Thermal Transport and Thermal Structural Domain in Microfibers
,” Ph.D. thesis,
Iowa State University
, Ames, IA.
109.
He
,
J.
,
Kim
,
K.
,
Wang
,
Y.
, and
Liu
,
J.
,
2018
, “
Strain Effects on the Anisotropic Thermal Transport in Crystalline Polyethylene
,”
Appl. Phys. Lett.
,
112
(
5
), p.
051907
.10.1063/1.5010986
110.
Jan
,
A. A.
,
Suh
,
D.
,
Bae
,
S.
, and
Baik
,
S.
,
2018
, “
Unusual Strain-Dependent Thermal Conductivity Modulation of Silver Nanoflower-Polyurethane Fibers
,”
Nanoscale
,
10
(
37
), pp.
17799
17806
.10.1039/C8NR04818E
111.
Yao
,
Y.
,
Zeng
,
X.
,
Pan
,
G.
,
Sun
,
J.
,
Hu
,
J.
,
Huang
,
Y.
,
Sun
,
R.
,
Xu
,
J.-B.
, and
Wong
,
C.-P.
,
2016
, “
Interfacial Engineering of Silicon Carbide Nanowire/Cellulose Microcrystal Paper Toward High Thermal Conductivity
,”
ACS Appl. Mater. Interfaces
,
8
(
45
), pp.
31248
31255
.10.1021/acsami.6b10935
112.
Yan
,
H.
,
Mahanta
,
N. K.
,
Majerus
,
L. J.
,
Abramson
,
A. R.
, and
Cakmak
,
M.
,
2014
, “
Thermal Conductivities of Electrospun Polyimide-Mesophase Pitch Nanofibers and Mats
,”
Polym. Eng. Sci.
,
54
(
4
), pp.
977
983
.10.1002/pen.23638
113.
Agrawal
,
A.
, and
Satapathy
,
A.
,
2013
, “
Development of a Heat Conduction Model and Investigation on Thermal Conductivity Enhancement of AlN/Epoxy Composites
,”
Procedia Eng.
,
51
, pp.
573
578
.10.1016/j.proeng.2013.01.081
114.
Wu
,
Y.
,
Zhang
,
X.
,
Negi
,
A.
,
He
,
J.
,
Hu
,
G.
,
Tian
,
S.
, and
Liu
,
J.
,
2020
, “
Synergistic Effects of Boron Nitride (BN) Nanosheets and Silver (Ag) Nanoparticles on Thermal Conductivity and Electrical Properties of Epoxy Nanocomposites
,”
Polymer
,
12
(
2
), p.
426
.10.3390/polym12020426
115.
Pang
,
Y.
,
Yang
,
J.
,
Curtis
,
T. E.
,
Luo
,
S.
,
Huang
,
D.
,
Feng
,
Z.
,
Morales-Ferreiro
,
J. O.
,
Sapkota
,
P.
,
Lei
,
F.
,
Zhang
,
J.
,
Zhang
,
Q.
,
Lee
,
E.
,
Huang
,
Y.
,
Guo
,
R.
,
Ptasinska
,
S.
,
Roeder
,
R. K.
, and
Luo
,
T.
,
2019
, “
Exfoliated Graphene Leads to Exceptional Mechanical Properties of Polymer Composite Films
,”
ACS Nano
,
13
(
2
), pp.
1097
1106
.
116.
Bai
,
L.
,
Zhao
,
X.
,
Bao
,
R.-Y.
,
Liu
,
Z.-Y.
,
Yang
,
M.-B.
, and
Yang
,
W.
,
2018
, “
Effect of Temperature, Crystallinity and Molecular Chain Orientation on the Thermal Conductivity of Polymers: A Case Study of PLLA
,”
J. Mater. Sci.
,
53
(
14
), pp.
10543
10553
.10.1007/s10853-018-2306-4
117.
Muthaiah
,
R.
, and
Garg
,
J.
,
2018
, “
Temperature Effects in the Thermal Conductivity of Aligned Amorphous Polyethylene—A Molecular Dynamics Study
,”
J. Appl. Phys.
,
124
(
10
), p.
105102
.10.1063/1.5041000
118.
Zhang
,
Y.
,
Zhang
,
X.
,
Yang
,
L.
,
Zhang
,
Q.
,
Fitzgerald
,
M. L.
,
Ueda
,
A.
,
Chen
,
Y.
,
Mu
,
R.
,
Li
,
D.
, and
Bellan
,
L. M.
,
2018
, “
Thermal Transport in Electrospun Vinyl Polymer Nanofibers: Effects of Molecular Weight and Side Groups
,”
Soft Matter
,
14
(
47
), pp.
9534
9541
.10.1039/C8SM01696H
119.
Robbins
,
A. B.
,
Drakopoulos
,
S. X.
,
Martin-Fabiani
,
I.
,
Ronca
,
S.
, and
Minnich
,
A. J.
,
2019
, “
Ballistic Thermal Phonons Traversing Nanocrystalline Domains in Oriented Polyethylene
,”
Proc. Natl. Acad. Sci.
,
116
(
35
), pp.
17163
17168
.10.1073/pnas.1905492116
120.
Wei
,
X.
,
Zhang
,
T.
, and
Luo
,
T.
,
2016
, “
Chain Conformation-Dependent Thermal Conductivity of Amorphous Polymer Blends: The Impact of Inter-and Intra-Chain Interactions
,”
Phys. Chem. Chem. Phys.
,
18
(
47
), pp.
32146
32154
.10.1039/C6CP06643G
121.
Luo
,
D.
,
Huang
,
C.
, and
Huang
,
Z.
,
2018
, “
Decreased Thermal Conductivity of Polyethylene Chain Influenced by Short Chain Branching
,”
ASME J. Heat Transfer
,
140
(
3
), p.
031302
.10.1115/1.4038003
122.
Ma
,
H.
, and
Tian
,
Z.
,
2017
, “
Effects of Polymer Topology and Morphology on Thermal Transport: A Molecular Dynamics Study of Bottlebrush Polymers
,”
Appl. Phys. Lett.
,
110
(
9
), p.
091903
.10.1063/1.4976946
123.
Duan
,
X.
,
Li
,
Z.
,
Liu
,
J.
,
Chen
,
G.
, and
Li
,
X.
,
2019
, “
Roles of Kink on the Thermal Transport in Single Polyethylene Chains
,”
J. Appl. Phys.
,
125
(
16
), p.
164303
.10.1063/1.5086453
124.
Subramanyan
,
H.
,
Zhang
,
W.
,
He
,
J.
,
Kim
,
K.
,
Li
,
X.
, and
Liu
,
J.
,
2019
, “
Role of Angular Bending Freedom in Regulating Thermal Transport in Polymers
,”
J. Appl. Phys.
,
125
(
9
), p.
095104
.10.1063/1.5086176
125.
Ma
,
H.
, and
Tian
,
Z.
,
2015
, “
Effects of Polymer Chain Confinement on Thermal Conductivity of Ultrathin Amorphous Polystyrene Films
,”
Appl. Phys. Lett.
,
107
(
7
), p.
073111
.10.1063/1.4929426
126.
Liu
,
J.
,
Ju
,
S.
,
Ding
,
Y.
, and
Yang
,
R.
,
2014
, “
Size Effect on the Thermal Conductivity of Ultrathin Polystyrene Films
,”
Appl. Phys. Lett.
,
104
(
15
), p.
153110
.10.1063/1.4871737
127.
Wang
,
Z.
,
Carter
,
J. A.
,
Lagutchev
,
A.
,
Koh
,
Y. K.
,
Seong
,
N.-H.
,
Cahill
,
D. G.
, and
Dlott
,
D. D.
,
2007
, “
Ultrafast Flash Thermal Conductance of Molecular Chains
,”
Science
,
317
(
5839
), pp.
787
790
.10.1126/science.1145220
128.
Yamanaka
,
A.
,
Izumi
,
Y.
,
Kitagawa
,
T.
,
Terada
,
T.
,
Sugihara
,
H.
,
Hirahata
,
H.
,
Ema
,
K.
,
Fujishiro
,
H.
, and
Nishijima
,
S.
,
2006
, “
The Radiation Effect on Thermal Conductivity of High Strength Ultra-High-Molecular-Weight Polyethylene Fiber by γ-Rays
,”
J. Appl. Polym. Sci.
,
101
(
4
), pp.
2619
2626
.10.1002/app.24227
129.
Yamanaka
,
A.
, and
Takao
,
T.
,
2011
, “
Thermal Conductivity of High-Strength Polyethylene Fiber and Applications for Cryogenic Use
,”
ISRN Mater. Sci.
,
2011
, pp.
1
10
.10.5402/2011/718761
130.
Liu
,
J.
,
Xu
,
Z.
,
Cheng
,
Z.
,
Xu
,
S.
, and
Wang
,
X.
,
2015
, “
Thermal Conductivity of Ultrahigh Molecular Weight Polyethylene Crystal: Defect Effect Uncovered by 0 K Limit Phonon Diffusion
,”
ACS Appl. Mater. Interfaces
,
7
(
49
), pp.
27279
27288
.10.1021/acsami.5b08578
131.
Sperling
,
L. H.
,
2006
,
Introduction to Physical Polymer Science
,
Wiley-Interscience
, Hoboken, NJ.
132.
Yesilata
,
B.
,
Isıker
,
Y.
, and
Turgut
,
P.
,
2009
, “
Thermal Insulation Enhancement in Concretes by Adding Waste PET and Rubber Pieces
,”
Const. Build. Mater.
,
23
(
5
), pp.
1878
1882
.10.1016/j.conbuildmat.2008.09.014
133.
Pang
,
Y.
,
Zhang
,
J.
,
Ma
,
R.
,
Qu
,
Z.
,
Lee
,
E.
, and
Luo
,
T.
,
2020
, “
Solar–Thermal Water Evaporation: A Review
,”
ACS Energy Lett.
,
5
(
2
), pp.
437
456
.10.1021/acsenergylett.9b02611
134.
Maxwell
,
J. C.
, and
Thompson
,
J. J.
,
1892
,
A Treatise on Electricity and Magnetism
,
Clarendon Press
,
Oxford
, p.
2
.
135.
Nan
,
C.-W.
,
Birringer
,
R.
,
Clarke
,
D. R.
, and
Gleiter
,
H.
,
1997
, “
Effective Thermal Conductivity of Particulate Composites With Interfacial Thermal Resistance
,”
J. Appl. Phys.
,
81
(
10
), pp.
6692
6699
.10.1063/1.365209
136.
Xie
,
X.
,
Yang
,
K.
, and
Li
,
D.
,
2017
, “
High and Low Thermal Conductivity of Amorphous Macromolecules
,”
Phys. Rev. B
,
95
(
3
), p.
035406
.10.1103/PhysRevB.95.035406
137.
Xie
,
X.
,
Li
,
D.
,
Tsai
,
T.-H.
,
Liu
,
J.
,
Braun
,
P. V.
, and
Cahill
,
D. G.
,
2016
, “
Thermal Conductivity, Heat Capacity, and Elastic Constants of Water-Soluble Polymers and Polymer Blends
,”
Macromolecules
,
49
(
3
), pp.
972
978
.10.1021/acs.macromol.5b02477
138.
Anderson
,
D. R.
,
1966
, “
Thermal Conductivity of Polymers
,”
Chem. Rev.
,
66
(
6
), pp.
677
690
.10.1021/cr60244a004
139.
Andersson
,
P.
, and
Sundqvist
,
B.
,
1975
, “
Pressure Dependence of the Thermal Conductivity, Thermal Diffusivity, and Specific Heat of Some Polymers
,”
J. Polym. Sci. Polym. Phys. Ed.
,
13
(
2
), pp.
243
251
.10.1002/pol.1975.180130202
140.
Eiermann
,
K.
,
1965
, “
Modellmäßige Deutung Der Wärmeleitfähigkeit Von Hochpolymeren
,”
Kolloid-Z. Und Z. Für Polymere
,
201
(
1
), pp.
3
15
.10.1007/BF01497072
141.
Eiermann
,
K.
, and
Hellwege
,
K.
,
1962
, “
Thermal Conductivity of High Polymers From −180 °C. to 90 °C
,”
J. Polym. Sci.
,
57
(
165
), pp.
99
106
.10.1002/pol.1962.1205716508
142.
Hands
,
D.
,
Lane
,
K.
, and
Sheldon
,
R. P.
,
2007
, “
Thermal Conductivities of Amorphous Polymers
,”
J. Polym. Sci. Polym. Symp.
,
42
(
2
), pp.
717
726
.10.1002/polc.5070420223
143.
Choy
,
C.
,
1977
, “
Thermal Conductivity of Polymers
,”
Polymer
,
18
(
10
), pp.
984
1004
.10.1016/0032-3861(77)90002-7
144.
Kittel
,
C.
,
1949
, “
Interpretation of the Thermal Conductivity of Glasses
,”
Phys. Rev.
,
75
(
6
), pp.
972
974
.10.1103/PhysRev.75.972
145.
Zeller
,
R. C.
, and
Pohl
,
R. O.
,
1971
, “
Thermal Conductivity and Specific Heat of Noncrystalline Solids
,”
Phys. Rev. B
,
4
(
6
), pp.
2029
2041
.10.1103/PhysRevB.4.2029
146.
Klemens
,
P. G.
,
1951
, “
The Thermal Conductivity of Dielectric Solids at Low Temperatures (Theoretical
),”
Proc. R. Soc. London.Ser. A. Math. Phys. Sci.
,
208
(
1092
), pp.
108
133
.10.1098/rspa.1951.0147
147.
Ziman
,
J. M.
,
2001
,
Electrons and Phonons: The Theory of Transport Phenomena in Solids
,
OUP
,
Oxford
, UK.
148.
Klemens
,
P.
,
1958
,
Solid State Physics
,
Elsevier
, New York, pp.
1
98
.
149.
Berman
,
R.
, and
Simon
,
F. E.
,
1951
, “
The Thermal Conductivities of Some Dielectric Solids at Low Temperatures (Experimental
),”
Proc. R. Soc. London. Ser. A. Math. Phys. Sci.
,
208
(
1092
), pp.
90
108
.10.1098/rspa.1951.0146
150.
Choy
,
C.
,
Salinger
,
G.
, and
Chiang
,
Y.
,
1970
, “
Thermal Conductivity of Some Amorphous Polymers Below 4° K
,”
J. Appl. Phys.
,
41
(
2
), pp.
597
603
.10.1063/1.1658719
151.
Burgess
,
S.
, and
Greig
,
D.
,
1975
, “
The Low-Temperature Thermal Conductivity of Polyethylene
,”
J. Phys. C Solid State Phys.
,
8
(
11
), pp.
1637
1648
.10.1088/0022-3719/8/11/015
152.
Anderson
,
P.
,
Halperin
,
B. I.
, and
Varma
,
C. M.
,
1972
, “
Anomalous Low-Temperature Thermal Properties of Glasses and Spin Glasses
,”
Philos. Mag. A J. Theor. Exp. Appl. Phys.
,
25
(
1
), pp.
1
9
.10.1080/14786437208229210
153.
Phillips
,
W. A.
,
1972
, “
Tunneling States in Amorphous Solids
,”
J. Low Temp. Phys.
,
7
(
3–4
), pp.
351
360
.10.1007/BF00660072
154.
Hattori
,
M.
,
1960
, “
Heat Conduction in Some Linear Polymers
,”
Bull. Univ. Osaka Prefect. Ser. A
,
9
, p.
51
.
155.
Van Krevelen
,
D. W.
,
2009
, “
And Te Nijenhuis, K
,”
Properties of Polymers: Their Correlation With Chemical Structure; Their Numerical Estimation and Prediction From Additive Group Contributions
,
Elsevier
, New York.
156.
Bicerano
,
J.
,
2002
,
Prediction of Polymer Properties
,
CRC Press
, New York.
157.
Kommandur
,
S.
, and
Yee
,
S. K.
,
2017
, “
An Empirical Model to Predict Temperature‐Dependent Thermal Conductivity of Amorphous Polymers
,”
J. Polym. Sci. Part B Polym. Phys.
,
55
(
15
), pp.
1160
1170
.10.1002/polb.24365
158.
Weber
,
H. F.
,
1880
, “
Untersuchungen Über Die Wärmeleitung in Flüssigkeiten
,”
Ann. Phys.
,
246
(
7
), pp.
472
500
.10.1002/andp.18802460708
159.
Wei
,
X.
, and
Luo
,
T.
,
2019
, “
Role of Ionization in Thermal Transport of Solid Polyelectrolytes
,”
J. Phys. Chem. C
,
123
(
20
), pp.
12659
12665
.10.1021/acs.jpcc.9b03064
160.
Hsieh
,
W.-P.
,
Losego
,
M. D.
,
Braun
,
P. V.
,
Shenogin
,
S.
,
Keblinski
,
P.
, and
Cahill
,
D. G.
,
2011
, “
Testing the Minimum Thermal Conductivity Model for Amorphous Polymers Using High Pressure
,”
Phys. Rev. B
,
83
(
17
), p.
174205
.10.1103/PhysRevB.83.174205
161.
Olson
,
J. R.
,
Topp
,
K. A.
, and
Pohl
,
R. O.
,
1993
, “
Specific Heat and Thermal Conductivity of Solid Fullerenes
,”
Science
,
259
(
5098
), pp.
1145
1148
.10.1126/science.259.5098.1145
162.
Wang
,
X.
,
Liman
,
C. D.
, and
Treat
,
N. D.
,
2013
, “
Ultralow Thermal Conductivity of Fullerene Derivatives
,”
Phys. Rev. B
,
88
(
7
), p.
075310
.10.1103/PhysRevB.88.075310
163.
Cahill
,
D. G.
,
Watson
,
S. K.
, and
Pohl
,
R. O.
,
1992
, “
Lower Limit to the Thermal Conductivity of Disordered Crystals
,”
Phys. Rev. B
,
46
(
10
), pp.
6131
6140
.10.1103/PhysRevB.46.6131
164.
Lv
,
W.
, and
Henry
,
A.
,
2016
, “
Non-Negligible Contributions to Thermal Conductivity From Localized Modes in Amorphous Silicon Dioxide
,”
Sci. Rep.
,
6
(
1
), p.
35720
.10.1038/srep35720
165.
Xi
,
Q.
,
Zhong
,
J.
,
He
,
J.
,
Xu
,
X.
,
Nakayama
,
T.
,
Wang
,
Y.
,
Liu
,
J.
,
Zhou
,
J.
, and
Li
,
B.
,
2020
, “
A Ubiquitous Thermal Conductivity Formula for Liquids, Polymer Glass, and Amorphous Solids
,”
Chin. Phys. Lett.
,
37
(
10
), p.
104401
.10.1088/0256-307X/37/10/104401
166.
Zhou
,
J.
,
Xi
,
Q.
, and
He
,
J.
,
2020
, “
Thermal Resistance Network Model for Heat Conduction of Amorphous Polymers
,”
Phys. Rev. Mater.
,
4
(
1
), p.
015601
.10.1103/PhysRevMaterials.4.015601
167.
Hattori
,
M.
,
1962
, “
Thermal Conductivity of Polytetrafluoroethylene and Polytrifluorochloroethylene
,”
Kolloid-Z. Z. Polym.
,
185
(
1
), pp.
27
31
.10.1007/BF01882344
168.
Lando
,
J. B.
,
Olf
,
H. G.
, and
Peterlin
,
A.
,
1966
, “
Nuclear Magnetic Resonance and x-Ray Determination of the Structure of Poly(Vinylidene Fluoride)
,”
J. Polym. Sci. Part A-1 Polym. Chem.
,
4
(
4
), pp.
941
951
.10.1002/pol.1966.150040420
169.
Peterlin
,
A.
,
1969
, “
Plastic Deformation of Polyethylene by Rolling and Drawing
,”
Kolloid-Z. Polym.
,
233
(
1–2
), pp.
857
862
.10.1007/BF01508005
170.
Choy
,
C.
,
Chen
,
F.
, and
Luk
,
W.
,
1980
, “
Thermal Conductivity of Oriented Crystalline Polymers
,”
J. Polym. Sci. Polym. Phys. Ed.
,
18
(
6
), pp.
1187
1207
.10.1002/pol.1980.180180603
171.
Choy
,
C. L.
, and
Young
,
K.
,
1977
, “
Thermal Conductivity of Semicrystalline Polymers — a Model
,”
Polymer
,
18
(
8
), pp.
769
776
.10.1016/0032-3861(77)90179-3
172.
Wei
,
L.
,
Kuo
,
P. K.
,
Thomas
,
R. L.
,
Anthony
,
T. R.
, and
Banholzer
,
W. F.
,
1993
, “
Thermal Conductivity of Isotopically Modified Single Crystal Diamond
,”
Phys. Rev. Lett.
,
70
(
24
), pp.
3764
3767
.10.1103/PhysRevLett.70.3764
173.
Chen
,
K.
,
Song
,
B.
,
Ravichandran
,
N. K.
,
Zheng
,
Q.
,
Chen
,
X.
,
Lee
,
H.
,
Sun
,
H.
,
Li
,
S.
,
Udalamatta Gamage
,
G. A. G.
,
Tian
,
F.
,
Ding
,
Z.
,
Song
,
Q.
,
Rai
,
A.
,
Wu
,
H.
,
Koirala
,
P.
,
Schmidt
,
A. J.
,
Watanabe
,
K.
,
Lv
,
B.
,
Ren
,
Z.
,
Shi
,
L.
,
Cahill
,
D. G.
,
Taniguchi
,
T.
,
Broido
,
D.
, and
Chen
,
G.
,
2020
, “
Ultrahigh Thermal Conductivity in Isotope-Enriched Cubic Boron Nitride
,”
Science
,
367
(
6477
), pp.
555
559
.10.1126/science.aaz6149
174.
Wei
,
X.
,
Ruimin
,
M. A.
, and
Luo
,
T.
,
2020
, “
Thermal Conductivity of Polyelectrolytes With Different Counterions
,”
J. Phys. Chem. C
,
124
, pp.
4483
4488
.10.1021/acs.jpcc.9b11689
175.
Reese
,
W.
,
1969
, “
Thermal Properties of Polymers at Low Temperatures
,”
J. Macromol. Sci.: Part A Chem.
,
3
(
7
), pp.
1257
1295
.10.1080/10601326908051826
176.
Allen
,
P. B.
,
Feldman
,
J. L.
,
Fabian
,
J.
, and
Wooten
,
F.
,
1999
, “
Diffusons, Locons and Propagons: Character of Atomic Vibrations in Amorphous Si
,”
Philos. Mag. Part B
,
79
(
11–12
), pp.
1715
1731
.10.1080/13642819908223054
177.
Alexander
,
S.
,
Entin-Wohlman
,
O.
, and
Orbach
,
R.
,
1986
, “
Phonon-Fracton Anharmonic Interactions: The Thermal Conductivity of Amorphous Materials
,”
Phys. Rev. B
,
34
(
4
), pp.
2726
2734
.10.1103/PhysRevB.34.2726
178.
Lv
,
W.
, and
Henry
,
A.
,
2016
, “
Direct Calculation of Modal Contributions to Thermal Conductivity Via Green–Kubo Modal Analysis
,”
New J. Phys.
,
18
(
1
), p.
013028
.10.1088/1367-2630/18/1/013028
179.
Moon
,
J.
,
Latour
,
B.
, and
Minnich
,
A. J.
,
2018
, “
Propagating Elastic Vibrations Dominate Thermal Conduction in Amorphous Silicon
,”
Phys. Rev. B
,
97
(
2
), p.
024201
.10.1103/PhysRevB.97.024201
180.
Klemens
,
P.
,
1965
, “
The Equations of Motions of an Elastic Medium Obeying Hooke's Law of
,”
Proceedings of the International Conference of Physics of Non-Crystalline Solids
, July, 1964,
Anonymous North-Holland Pub. Co
., Delft, The Netherlands, p.
162
.
181.
Klemens
,
P. G.
,
1985
,
Thermal Conductivity 18
,
Springer US
,
Boston, MA
, pp.
307
314
.
182.
Shenogin
,
S.
,
Bodapati
,
A.
,
Keblinski
,
P.
, and
McGaughey
,
A. J. H.
,
2009
, “
Predicting the Thermal Conductivity of Inorganic and Polymeric Glasses: The Role of Anharmonicity
,”
J. Appl. Phys.
,
105
(
3
), p.
034906
.10.1063/1.3073954
183.
Lv
,
W.
, and
Henry
,
A.
,
2016
, “
Phonon Transport in Amorphous Carbon Using Green–Kubo Modal Analysis
,”
Appl. Phys. Lett.
,
108
(
18
), p.
181905
.10.1063/1.4948605
184.
Hansen
,
D.
,
Kantayya
,
R. C.
, and
Ho
,
C. C.
,
1966
, “
Thermal Conductivity of High Polymers—the Influence of Molecular Weight
,”
Polym. Eng. Sci.
,
6
(
3
), pp.
260
262
.10.1002/pen.760060315
185.
Naghizadeh
,
J.
, and
Ueberreiter
,
K.
,
1972
, “
Thermal Diffusivity of Polymers
,”
Kolloid-Z. Polym.
,
250
(
10
), pp.
932
938
.10.1007/BF01498960
186.
Morikawa
,
J.
,
Tan
,
J.
, and
Hashimoto
,
T.
,
1995
, “
Study of Change in Thermal Diffusivity of Amorphous Polymers During Glass Transition
,”
Polymer
,
36
(
23
), pp.
4439
4443
.10.1016/0032-3861(95)96850-8
187.
Piven'
,
A. N.
, and
Kirichenko
,
V. I.
,
1975
, “
Effect of Supermolecular Structure on Thermophysical Properties of Polymers
,”
Polym. Sci. U.S.S.R.
,
17
(
8
), pp.
2076
2081
.10.1016/0032-3950(75)90104-5
188.
Fesciyan
,
S.
, and
Frisch
,
H. L.
,
1977
, “
The Thermal Conductivity of Polymer Melts
,”
J. Chem. Phys.
,
67
(
12
), pp.
5691
5694
.10.1063/1.434823
189.
Luba
,
M.
,
Pelt
,
T.
, and
Griskey
,
R. G.
,
1979
, “
Correlating and Predicting Polymer Thermal Conductivities
,”
J. Appl. Polym. Sci.
,
23
(
1
), pp.
55
58
.10.1002/app.1979.070230105
190.
van den Brule
,
B. H. A. A.
,
1989
, “
A Network Theory for the Thermal Conductivity of an Amorphous Polymeric Material
,”
Rheol. Acta
,
28
(
4
), pp.
257
266
.10.1007/BF01329335
191.
Ohara
,
T.
,
Chia Yuan
,
T.
,
Torii
,
D.
,
Kikugawa
,
G.
, and
Kosugi
,
N.
,
2011
, “
Heat Conduction in Chain Polymer Liquids: Molecular Dynamics Study on the Contributions of Inter- and Intramolecular Energy Transfer
,”
J. Chem. Phys.
,
135
(
3
), p.
034507
.10.1063/1.3613648
192.
Kawagoe
,
Y.
,
Surblys
,
D.
,
Kikugawa
,
G.
, and
Ohara
,
T.
,
2019
, “
Molecular Dynamics Study on Thermal Energy Transfer in Bulk Polyacrylic Acid
,”
AIP Adv.
,
9
(
2
), p.
025302
.10.1063/1.5080432
193.
Matsubara
,
H.
,
Kikugawa
,
G.
,
Bessho
,
T.
,
Yamashita
,
S.
, and
Ohara
,
T.
,
2017
, “
Molecular Dynamics Study on the Role of Hydroxyl Groups in Heat Conduction in Liquid Alcohols
,”
Int. J. Heat Mass Transfer
,
108
, pp.
749
759
.10.1016/j.ijheatmasstransfer.2016.12.045
194.
Zhao
,
J.
,
Jiang
,
J.-W.
,
Wei
,
N.
,
Zhang
,
Y.
, and
Rabczuk
,
T.
,
2013
, “
Thermal Conductivity Dependence on Chain Length in Amorphous Polymers
,”
J. Appl. Phys.
,
113
(
18
), p.
184304
.10.1063/1.4804237
195.
Wei
,
X.
, and
Luo
,
T.
,
2019
, “
Chain Length Effect on Thermal Transport in Amorphous Polymers and a Structure “Thermal Conductivity Relation
,”
Phys. Chem. Chem. Phys.
,
21
(
28
), pp.
15523
15530
.10.1039/C9CP02397F
196.
Wei
,
X.
, and
Luo
,
T.
,
2018
, “
The Effect of the Block Ratio on the Thermal Conductivity of Amorphous Polyethylene “Polypropylene (PE–PP) Diblock Copolymers
,”
Phys. Chem. Chem. Phys.
,
20
(
31
), pp.
20534
20539
.10.1039/C8CP03433H
197.
Mai
,
C.-K.
,
Schlitz
,
R. A.
,
Su
,
G. M.
,
Spitzer
,
D.
,
Wang
,
X.
,
Fronk
,
S. L.
,
Cahill
,
D. G.
,
Chabinyc
,
M. L.
, and
Bazan
,
G. C.
,
2014
, “
Side-Chain Effects on the Conductivity, Morphology, and Thermoelectric Properties of Self-Doped Narrow-Band-Gap Conjugated Polyelectrolytes
,”
J. Am. Chem. Soc.
,
136
(
39
), pp.
13478
13481
.10.1021/ja504284r
198.
Guo
,
Z.
,
Lee
,
D.
,
Liu
,
Y.
,
Sun
,
F.
,
Sliwinski
,
A.
,
Gao
,
H.
,
Burns
,
P. C.
,
Huang
,
L.
, and
Luo
,
T.
,
2014
, “
Tuning the Thermal Conductivity of Solar Cell Polymers Through Side Chain Engineering
,”
Phys. Chem. Chem. Phys.
,
16
(
17
), pp.
7764
7771
.10.1039/C4CP00393D
199.
Minnich
,
A.
, and
Chen
,
G.
,
2007
, “
Modified Effective Medium Formulation for the Thermal Conductivity of Nanocomposites
,”
Appl. Phys. Lett.
,
91
(
7
), p.
073105
.10.1063/1.2771040
200.
Morikawa
,
J.
,
Kobayahi
,
A.
, and
Hashimoto
,
T.
,
1995
, “
Thermal Diffusivity in a Binary Mixture of Poly(Phenylene Oxide) and Polystyrene
,”
Thermochim. Acta
,
267
, pp.
289
296
.10.1016/0040-6031(95)02486-7
201.
Taraghi
,
I.
,
Paszkiewicz
,
S.
,
Fereidoon
,
A.
,
Szymczyk
,
A.
,
Stanik
,
R.
,
Gude
,
M.
,
Linares
,
A.
,
Ezquerra
,
T. A.
,
Piesowicz
,
E.
,
Wilpiszewska
,
K.
, and
Roslaniec
,
Z.
,
2019
, “
Thermally and Electrically Conducting Polycarbonate/Elastomer Blends Combined With Multiwalled Carbon Nanotubes
,”
J. Thermoplastic Compos. Mater., epub.
10.1177/0892705719868275
202.
Duda
,
J. C.
,
Hopkins
,
P. E.
,
Shen
,
Y.
, and
Gupta
,
M. C.
,
2013
, “
Thermal Transport in Organic Semiconducting Polymers
,”
Appl. Phys. Lett.
,
102
(
25
), p.
251912
.10.1063/1.4812234
203.
Guo
,
Z.
,
Lee
,
D.
,
Strzalka
,
J.
,
Gao
,
H.
,
Huang
,
L.
,
Khounsary
,
A. M.
, and
Luo
,
T.
,
2014
, “
Thermal Conductivity of Organic Bulk Heterojunction Solar Cells: An Unusual Binary Mixing Effect
,”
Phys. Chem. Chem. Phys.
,
16
(
47
), pp.
26359
26364
.10.1039/C4CP04099F
204.
Bruns
,
D.
,
de Oliveira
,
T. E.
,
Rottler
,
J.
, and
Mukherji
,
D.
,
2019
, “
Tuning Morphology and Thermal Transport of Asymmetric Smart Polymer Blends by Macromolecular Engineering
,”
Macromolecules
,
52
(
15
), pp.
5510
5517
.10.1021/acs.macromol.9b00806
205.
Mehra
,
N.
,
Mu
,
L.
,
Ji
,
T.
,
Li
,
Y.
, and
Zhu
,
J.
,
2017
, “
Moisture Driven Thermal Conduction in Polymer and Polymer Blends
,”
Compos. Sci. Technol.
,
151
, pp.
115
123
.10.1016/j.compscitech.2017.08.010
206.
Shanker
,
A.
,
Li
,
C.
,
Kim
,
G.-H.
,
Gidley
,
D.
,
Pipe
,
K. P.
, and
Kim
,
J.
,
2017
, “
High Thermal Conductivity in Electrostatically Engineered Amorphous Polymers
,”
Sci. Adv.
,
3
(
7
), p.
e1700342
.10.1126/sciadv.1700342
207.
Hsiao
,
P.
,
2006
, “
Chain Morphology, Swelling Exponent, Persistence Length, Like-Charge Attraction, and Charge Distribution Around a Chain in Polyelectrolyte Solutions:  Effects of Salt Concentration and Ion Size Studied by Molecular Dynamics Simulations
,”
Macromolecules
,
39
(
20
), pp.
7125
7137
.10.1021/ma0609782
208.
Liu
,
S.
,
Ghosh
,
K.
, and
Muthukumar
,
M.
,
2003
, “
Polyelectrolyte Solutions With Added Salt: A Simulation Study
,”
J. Chem. Phys.
,
119
(
3
), pp.
1813
1823
.10.1063/1.1580109
209.
Reed
,
W. F.
,
Ghosh
,
S.
,
Medjahdi
,
G.
, and
Francois
,
J.
,
1991
, “
Dependence of Polyelectrolyte Apparent Persistence Lengths, Viscosity, and Diffusion on Ionic Strength and Linear Charge Density
,”
Macromolecules
,
24
(
23
), pp.
6189
6198
.10.1021/ma00023a021
210.
Li
,
N.
,
Ren
,
J.
,
Wang
,
L.
,
Zhang
,
G.
,
Hänggi
,
P.
, and
Li
,
B.
,
2012
, “
Colloquium: Phononics: Manipulating Heat Flow With Electronic Analogs and Beyond
,”
Rev. Mod. Phys.
,
84
(
3
), pp.
1045
1066
.10.1103/RevModPhys.84.1045
211.
Wehmeyer
,
G.
,
Yabuki
,
T.
,
Monachon
,
C.
,
Wu
,
J.
, and
Dames
,
C.
,
2017
, “
Thermal Diodes, Regulators, and Switches: Physical Mechanisms and Potential Applications
,”
Appl. Phys. Rev.
,
4
(
4
), p.
041304
.10.1063/1.5001072
212.
Shrestha
,
R.
,
Luan
,
Y.
,
Luo
,
X.
,
Shin
,
S.
,
Zhang
,
T.
,
Smith
,
P.
,
Gong
,
W.
,
Bockstaller
,
M.
,
Luo
,
T.
,
Chen
,
R.
,
Hippalgaonkar
,
K.
, and
Shen
,
S.
,
2020
, “
Dual-Mode Solid-State Thermal Rectification
,”
Nat. Commun.
,
11
(
1
), p.
4346
.10.1038/s41467-020-18212-2
213.
Sarı
,
A.
, and
Karaipekli
,
A.
,
2007
, “
Thermal Conductivity and Latent Heat Thermal Energy Storage Characteristics of Paraffin/Expanded Graphite Composite as Phase Change Material
,”
Appl. Therm. Eng.
,
27
(
8–9
), pp.
1271
1277
.10.1016/j.applthermaleng.2006.11.004
214.
Li
,
C.
,
Ma
,
Y.
, and
Tian
,
Z.
,
2018
, “
Thermal Switching of Thermoresponsive Polymer Aqueous Solutions
,”
ACS Macro Lett.
,
7
(
1
), pp.
53
58
.10.1021/acsmacrolett.7b00938
215.
Cottrill
,
A. L.
,
Wang
,
S.
,
Liu
,
A. T.
,
Wang
,
W.-J.
, and
Strano
,
M. S.
,
2018
, “
Dual Phase Change Thermal Diodes for Enhanced Rectification Ratios: Theory and Experiment
,”
Adv. Energy Mater.
,
8
(
11
), p.
1702692
.10.1002/aenm.201702692
216.
Tomko
,
J. A.
,
Pena-Francesch
,
A.
,
Jung
,
H.
,
Tyagi
,
M.
,
Allen
,
B. D.
,
Demirel
,
M. C.
, and
Hopkins
,
P. E.
,
2018
, “
Tunable Thermal Transport and Reversible Thermal Conductivity Switching in Topologically Networked Bio-Inspired Materials
,”
Nat. Nanotechnol.
,
13
(
10
), pp.
959
964
.10.1038/s41565-018-0227-7
217.
Feng
,
H.
,
Tang
,
N.
,
An
,
M.
,
Guo
,
R.
,
Ma
,
D.
,
Yu
,
X.
,
Zang
,
J.
, and
Yang
,
N.
,
2019
, “
Thermally-Responsive Hydrogels Poly(N-Isopropylacrylamide) as the Thermal Switch
,”
J. Phys. Chem. C
,
123
(
51
), pp.
31003
31010
.10.1021/acs.jpcc.9b08594
218.
Tang
,
N.
,
Peng
,
Z.
,
Guo
,
R.
,
An
,
M.
,
Chen
,
X.
,
Li
,
X.
,
Yang
,
N.
, and
Zang
,
J.
,
2017
, “
Thermal Transport in Soft PAAm Hydrogels
,”
Polymer
,
9
(
12
), p.
688
.10.3390/polym9120688
219.
Shin
,
J.
,
Kang
,
M.
,
Tsai
,
T.
,
Leal
,
C.
,
Braun
,
P. V.
, and
Cahill
,
D. G.
,
2016
, “
Thermally Functional Liquid Crystal Networks by Magnetic Field Driven Molecular Orientation
,”
ACS Macro Lett.
,
5
(
8
), pp.
955
960
.10.1021/acsmacrolett.6b00475
220.
Shin
,
J.
,
Sung
,
J.
,
Kang
,
M.
,
Xie
,
X.
,
Lee
,
B.
,
Lee
,
K. M.
,
White
,
T. J.
,
Leal
,
C.
,
Sottos
,
N. R.
,
Braun
,
P. V.
, and
Cahill
,
D. G.
,
2019
, “
Light-Triggered Thermal Conductivity Switching in Azobenzene Polymers
,”
Proc. Natl. Acad. Sci.
,
116
(
13
), pp.
5973
5978
.10.1073/pnas.1817082116
221.
Ma
,
H.
, and
Tian
,
Z.
,
2018
, “
Significantly High Thermal Rectification in an Asymmetric Polymer Molecule Driven by Diffusive Versus Ballistic Transport
,”
Nano Lett.
,
18
(
1
), pp.
43
48
.10.1021/acs.nanolett.7b02867
222.
Cahill
,
D. G.
,
Ford
,
W. K.
,
Goodson
,
K. E.
,
Mahan
,
G. D.
,
Majumdar
,
A.
,
Maris
,
H. J.
,
Merlin
,
R.
, and
Phillpot
,
S. R.
,
2003
, “
Nanoscale Thermal Transport
,”
J. Appl. Phys.
,
93
(
2
), pp.
793
818
.10.1063/1.1524305
223.
Hopkins
,
P. E.
,
2013
, “
Thermal Transport Across Solid Interfaces With Nanoscale Imperfections: Effects of Roughness, Disorder, Dislocations, and Bonding on Thermal Boundary Conductance
,”
ISRN Mech. Eng.
,
2013
, pp.
1
19
.10.1155/2013/682586
224.
Ge
,
Z.
,
Cahill
,
D. G.
, and
Braun
,
P. V.
,
2006
, “
Thermal Conductance of Hydrophilic and Hydrophobic Interfaces
,”
Phys. Rev. Lett.
,
96
(
18
), p.
186101
.10.1103/PhysRevLett.96.186101
225.
Losego
,
M. D.
,
Grady
,
M. E.
,
Sottos
,
N. R.
,
Cahill
,
D. G.
, and
Braun
,
P. V.
,
2012
, “
Effects of Chemical Bonding on Heat Transport Across Interfaces
,”
Nat. Mater.
,
11
(
6
), pp.
502
506
.10.1038/nmat3303
226.
Swartz
,
E. T.
, and
Pohl
,
R. O.
,
1989
, “
Thermal Boundary Resistance
,”
Rev. Mod. Phys.
,
61
(
3
), pp.
605
668
.10.1103/RevModPhys.61.605
227.
Zheng
,
K.
,
Sun
,
F.
,
Zhu
,
J.
,
Ma
,
Y.
,
Li
,
X.
,
Tang
,
D.
,
Wang
,
F.
, and
Wang
,
X.
,
2016
, “
Enhancing the Thermal Conductance of Polymer and Sapphire Interface Via Self-Assembled Monolayer
,”
ACS Nano
,
10
(
8
), pp.
7792
7798
.10.1021/acsnano.6b03381
228.
Wang
,
R. Y.
,
Segalman
,
R. A.
, and
Majumdar
,
A.
,
2006
, “
Room Temperature Thermal Conductance of Alkanedithiol Self-Assembled Monolayers
,”
Appl. Phys. Lett.
,
89
(
17
), p.
173113
.10.1063/1.2358856
229.
Konatham
,
D.
, and
Striolo
,
A.
,
2009
, “
Thermal Boundary Resistance at the Graphene-Oil Interface
,”
Appl. Phys. Lett.
,
95
(
16
), p.
163105
.10.1063/1.3251794
230.
Zhang
,
L.
,
Bai
,
Z.
, and
Liu
,
L.
,
2016
, “
Exceptional Thermal Conductance Across Hydrogen‐Bonded Graphene/Polymer Interfaces
,”
Adv. Mater. Interfaces
,
3
(
13
), p.
1600211
.10.1002/admi.201600211
231.
Huang
,
D.
,
Ma
,
R.
,
Zhang
,
T.
, and
Luo
,
T.
,
2018
, “
Origin of Hydrophilic Surface Functionalization-Induced Thermal Conductance Enhancement Across Solid–Water Interfaces
,”
ACS Appl. Mater. Interfaces
,
10
(
33
), pp.
28159
28165
.10.1021/acsami.8b03709
232.
Huxtable
,
S. T.
,
Cahill
,
D. G.
,
Shenogin
,
S.
,
Xue
,
L.
,
Ozisik
,
R.
,
Barone
,
P.
,
Usrey
,
M.
,
Strano
,
M. S.
,
Siddons
,
G.
,
Shim
,
M.
, and
Keblinski
,
P.
,
2003
, “
Interfacial Heat Flow in Carbon Nanotube Suspensions
,”
Nat. Mater.
,
2
(
11
), pp.
731
734
.10.1038/nmat996
233.
Ge
,
Z.
,
Cahill
,
D. G.
, and
Braun
,
P. V.
,
2004
, “
AuPd Metal Nanoparticles as Probes of Nanoscale Thermal Transport in Aqueous Solution
,”
J. Phys. Chem. B
,
108
(
49
), pp.
18870
18875
.10.1021/jp048375k
234.
Tian
,
Z.
,
Marconnet
,
A.
, and
Chen
,
G.
,
2015
, “
Enhancing Solid-Liquid Interface Thermal Transport Using Self-Assembled Monolayers
,”
Appl. Phys. Lett.
,
106
(
21
), p.
211602
.10.1063/1.4921758
235.
Shenogina
,
N.
,
Keblinski
,
P.
, and
Garde
,
S.
,
2008
, “
Strong Frequency Dependence of Dynamical Coupling Between Protein and Water
,”
J. Chem. Phys.
,
129
(
15
), p.
155105
.10.1063/1.2991183
236.
Wu
,
X.
, and
Luo
,
T.
,
2015
, “
Effect of Electron-Phonon Coupling on Thermal Transport Across Metal-Nonmetal Interface—A Second Look
,”
EPL (Europhys. Lett.)
,
110
(
6
), p.
67004
.10.1209/0295-5075/110/67004
237.
Luo
,
T.
, and
Lloyd
,
J. R.
,
2010
, “
Non-Equilibrium Molecular Dynamics Study of Thermal Energy Transport in Au–SAM–Au Junctions
,”
Int. J. Heat Mass Transfer
,
53
(
1–3
), pp.
1
11
.10.1016/j.ijheatmasstransfer.2009.10.033
238.
Neidhart
,
S. M.
, and
Gezelter
,
J. D.
,
2018
, “
Thermal Transport is Influenced by Nanoparticle Morphology: A Molecular Dynamics Study
,”
J. Phys. Chem. C
,
122
(
2
), pp.
1430
1436
.10.1021/acs.jpcc.7b12362
239.
Carlborg
,
C. F.
,
Shiomi
,
J.
, and
Maruyama
,
S.
,
2008
, “
Thermal Boundary Resistance Between Single-Walled Carbon Nanotubes and Surrounding Matrices
,”
Phys. Rev. B
,
78
(
20
), p.
205406
.10.1103/PhysRevB.78.205406
240.
Hopkins
,
P. E.
,
Duda
,
J. C.
, and
Norris
,
P. M.
,
2011
, “
Anharmonic Phonon Interactions at Interfaces and Contributions to Thermal Boundary Conductance
,”
ASME J. Heat Transfer
,
133
(
6
), p.
062401
.10.1115/1.4003549
241.
Hopkins
,
P. E.
,
2009
, “
Multiple Phonon Processes Contributing to Inelastic Scattering During Thermal Boundary Conductance at Solid Interfaces
,”
J. Appl. Phys.
,
106
(
1
), p.
013528
.10.1063/1.3169515
242.
Wu
,
X.
, and
Luo
,
T.
,
2014
, “
The Importance of Anharmonicity in Thermal Transport Across Solid-Solid Interfaces
,”
J. Appl. Phys.
,
115
(
1
), p.
014901
.10.1063/1.4859555
243.
Lee
,
E.
, and
Luo
,
T.
,
2018
, “
Thermal Transport Across Solid-Solid Interfaces Enhanced by Pre-Interface Isotope-Phonon Scattering
,”
Appl. Phys. Lett.
,
112
(
1
), p.
011603
.10.1063/1.5003827
244.
Li
,
R.
,
Lee
,
E.
, and
Luo
,
T.
,
2020
, “
Pre-Interface Scattering Influenced Interfacial Thermal Transport Across Solid Interfaces
,”
Nanoscale Energy Transport
,
B.
Liao
, ed.,
IOP Publishing
,
Bristol, UK
.
245.
Dai
,
J.
, and
Tian
,
Z.
,
2020
, “
Rigorous Formalism of Anharmonic Atomistic Green's Function for Three-Dimensional Interfaces
,”
Phys. Rev. B
,
101
(
4
), p.
041301
.10.1103/PhysRevB.101.041301
246.
Wei
,
X.
,
Zhang
,
T.
, and
Luo
,
T.
,
2017
, “
Molecular Fin Effect From Heterogeneous Self-Assembled Monolayer Enhances Thermal Conductance Across Hard–Soft Interfaces
,”
ACS Appl. Mater. Interfaces
,
9
(
39
), pp.
33740
33748
.10.1021/acsami.7b07169
247.
Stocker
,
K. M.
, and
Gezelter
,
J. D.
,
2013
, “
Simulations of Heat Conduction at Thiolate-Capped Gold Surfaces: The Role of Chain Length and Solvent Penetration
,”
J. Phys. Chem. C
,
117
(
15
), pp.
7605
7612
.10.1021/jp312734f
248.
Hannah
,
D. C.
,
Gezelter
,
J. D.
,
Schaller
,
R. D.
, and
Schatz
,
G. C.
,
2015
, “
Reverse Non-Equilibrium Molecular Dynamics Demonstrate That Surface Passivation Controls Thermal Transport at Semiconductor–Solvent Interfaces
,”
ACS Nano
,
9
(
6
), pp.
6278
6287
.10.1021/acsnano.5b01724
249.
Ramos-Alvarado
,
B.
,
Kumar
,
S.
, and
Peterson
,
G. P.
,
2016
, “
Solid–Liquid Thermal Transport and Its Relationship With Wettability and the Interfacial Liquid Structure
,”
J. Phys. Chem. Lett.
,
7
(
17
), pp.
3497
3501
.10.1021/acs.jpclett.6b01605
250.
Allen
,
P. B.
, and
Feldman
,
J. L.
,
1989
, “
Thermal Conductivity of Glasses: Theory and Application to Amorphous Si
,”
Phys. Rev. Lett.
,
62
(
6
), pp.
645
648
.10.1103/PhysRevLett.62.645
251.
Larkin
,
J. M.
, and
McGaughey
,
A. J. H.
,
2014
, “
Thermal Conductivity Accumulation in Amorphous Silica and Amorphous Silicon
,”
Phys. Rev. B
,
89
(
14
), p.
144303
.10.1103/PhysRevB.89.144303
252.
Pan
,
Y.
,
Zhou
,
J.
, and
Chen
,
G.
,
2020
, “
Quantifying Thermal Transport in Amorphous Silicon Using Mean Free Path Spectroscopy
,”
Phys. Rev. B
,
101
(
14
), p.
144203
.10.1103/PhysRevB.101.144203
253.
DeAngelis
,
F.
,
Muraleedharan
,
M. G.
,
Moon
,
J.
,
Seyf
,
H. R.
,
Minnich
,
A. J.
,
McGaughey
,
A. J. H.
, and
Henry
,
A.
,
2019
, “
Thermal Transport in Disordered Materials
,”
Nanoscale Microscale Thermophys. Eng.
,
23
(
2
), pp.
81
116
.10.1080/15567265.2018.1519004
254.
Alberi
,
K.
,
Nardelli
,
M. B.
,
Zakutayev
,
A.
,
Mitas
,
L.
,
Curtarolo
,
S.
,
Jain
,
A.
,
Fornari
,
M.
,
Marzari
,
N.
,
Takeuchi
,
I.
,
Green
,
M. L.
,
Kanatzidis
,
M.
,
Toney
,
M. F.
,
Butenko
,
S.
,
Meredig
,
B.
,
Lany
,
S.
,
Kattner
,
U.
,
Davydov
,
A.
,
Toberer
,
E. S.
,
Stevanovic
,
V.
,
Walsh
,
A.
,
Park
,
N.-G.
,
Aspuru-Guzik
,
A.
,
Tabor
,
D. P.
,
Nelson
,
J.
,
Murphy
,
J.
,
Setlur
,
A.
,
Gregoire
,
J.
,
Li
,
H.
,
Xiao
,
R.
,
Ludwig
,
A.
,
Martin
,
L. W.
,
Rappe
,
A. M.
,
Wei
,
S.-H.
, and
Perkins
,
J.
,
2019
, “
The 2019 Materials by Design Roadmap
,”
J. Phys. D Appl. Phys.
,
52
(
1
), p.
013001
.10.1088/1361-6463/aad926
255.
Gorai
,
P.
,
Stevanović
,
V.
, and
Toberer
,
E. S.
,
2017
, “
Computationally Guided Discovery of Thermoelectric Materials
,”
Nat. Rev. Mater.
,
2
(
9
), p.
17053
.10.1038/natrevmats.2017.53
256.
Carrete
,
J.
,
Li
,
W.
, and
Mingo
,
N.
,
2014
, “
Finding Unprecedentedly Low-Thermal-Conductivity Half-Heusler Semiconductors Via High-Throughput Materials Modeling
,”
Phys. Rev. X
,
4
(
1
), p.
011019
.10.1103/PhysRevX.4.011019
257.
Oliynyk
,
A. O.
,
Antono
,
E.
,
Sparks
,
T. D.
,
Ghadbeigi
,
L.
,
Gaultois
,
M. W.
,
Meredig
,
B.
, and
Mar
,
A.
,
2016
, “
High-Throughput Machine-Learning-Driven Synthesis of Full-Heusler Compounds
,”
Chem. Mater.
,
28
(
20
), pp.
7324
7331
.10.1021/acs.chemmater.6b02724
258.
Gaultois
,
M. W.
,
Oliynyk
,
A. O.
,
Mar
,
A.
,
Sparks
,
T. D.
,
Mulholland
,
G. J.
, and
Meredig
,
B.
,
2016
, “
Perspective: Web-Based Machine Learning Models for Real-Time Screening of Thermoelectric Materials Properties
,”
APL Mater.
,
4
(
5
), p.
053213
.10.1063/1.4952607
259.
Carrete
,
J.
,
Mingo
,
N.
,
Wang
,
S.
, and
Curtarolo
,
S.
,
2014
, “
Nanograined Half-Heusler Semiconductors as Advanced Thermoelectrics: An Ab Initio High-Throughput Statistical Study
,”
Adv. Funct. Mater.
,
24
(
47
), pp.
7427
7432
.10.1002/adfm.201401201
260.
Audus
,
D. J.
, and
de Pablo
,
J. J.
,
2017
, “
Polymer Informatics: Opportunities and Challenges
,”
ACS Macro Lett.
,
6
(
10
), pp.
1078
1082
.10.1021/acsmacrolett.7b00228
261.
Wu
,
S.
,
Kondo
,
Y.
,
Kakimoto
,
M.-A.
,
Yang
,
B.
,
Yamada
,
H.
,
Kuwajima
,
I.
,
Lambard
,
G.
,
Hongo
,
K.
,
Xu
,
Y.
,
Shiomi
,
J.
,
Schick
,
C.
,
Morikawa
,
J.
, and
Yoshida
,
R.
,
2019
, “
Machine-Learning-Assisted Discovery of Polymers With High Thermal Conductivity Using a Molecular Design Algorithm
,”
NPJ Comput. Mater.
,
5
(
1
), p.
66
.10.1038/s41524-019-0203-2
262.
Liu
,
Z.
,
Jiang
,
M.
, and
Luo
,
T.
,
2020
, “
Leverage Electron Properties to Predict Phonon Properties Via Transfer Learning for Semiconductors
,”
Sci. Adv.
,
6
(
45
), p.
eabd1356
.10.1126/sciadv.abd1356
263.
Ma
,
R.
,
Huang
,
D.
,
Zhang
,
T.
, and
Luo
,
T.
,
2018
, “
Determining Influential Descriptors for Polymer Chain Conformation Based on Empirical Force-Fields and Molecular Dynamics Simulations
,”
Chem. Phys. Lett.
,
704
, pp.
49
54
.10.1016/j.cplett.2018.05.035
264.
Ma
,
R.
,
Liu
,
Z.
,
Zhang
,
Q.
,
Liu
,
Z.
, and
Luo
,
T.
,
2019
, “
Evaluating Polymer Representations Via Quantifying Structure–Property Relationships
,”
J. Chem. Inf. Model.
,
59
(
7
), pp.
3110
3119
.10.1021/acs.jcim.9b00358
265.
Meng
,
H.
,
Yu
,
X.
,
Feng
,
H.
,
Xue
,
Z.
, and
Yang
,
N.
,
2019
, “
Superior Thermal Conductivity of Poly (Ethylene Oxide) for Solid-State Electrolytes: A Molecular Dynamics Study
,”
Int. J. Heat Mass Transfer
,
137
, pp.
1241
1246
.10.1016/j.ijheatmasstransfer.2019.04.021
266.
Jin
,
Y.
,
2006
,
Multi-Objective Machine Learning
,
Springer Science & Business Media
, Berlin.
267.
Gao
,
T.
,
Yang
,
Z.
,
Chen
,
C.
,
Li
,
Y.
,
Fu
,
K.
,
Dai
,
J.
,
Hitz
,
E. M.
,
Xie
,
H.
,
Liu
,
B.
,
Song
,
J.
,
Yang
,
B.
, and
Hu
,
L.
,
2017
, “
Three-Dimensional Printed Thermal Regulation Textiles
,”
ACS Nano
,
11
(
11
), pp.
11513
11520
.10.1021/acsnano.7b06295
268.
Boriskina
,
S. V.
,
2019
, “
An Ode to Polyethylene
,”
MRS Energy Sustainable
,
6
(
1
), p.
E14
.10.1557/mre.2019.15
269.
Russ
,
B.
,
Glaudell
,
A.
,
Urban
,
J. J.
,
Chabinyc
,
M. L.
, and
Segalman
,
R. A.
,
2016
, “
Organic Thermoelectric Materials for Energy Harvesting and Temperature Control
,”
Nat. Rev. Mater.
,
1
(
10
), p.
16050
.10.1038/natrevmats.2016.50
You do not currently have access to this content.