Abstract

In this paper, we incorporate a nonequilibrium thermodynamics perspective that is consistent with the Onsager reciprocity principle into the lattice Boltzmann framework to propose a novel regularized lattice Boltzmann formulation for modeling the Navier–Stokes–Fourier equations. The new method is applied to one-dimensional (1D) isothermal situations wherein the advantages of incorporating such a nonequilibrium perspective can be explicitly appreciated. In such situations, the nonequilibrium contribution of the lattice populations obtained by the new method completely vanishes, and the lattice update is entirely reduced to evaluating the equilibrium distribution function. Such a counterintuitive 1D mesoscopic description is not obtained in any other existing lattice Boltzmann scheme. We therefore numerically test the proposed formulation on two complex problems, namely, shockwave and nonlinear wave propagation, and compare results with analytical results along with six existing lattice Boltzmann schemes; it is found that the new method indeed yields results that are more stable and accurate. These results highlight the potency of the nonequilibrium thermodynamics-based approach for obtaining accurate and stable lattice Boltzmann computations, and provide new insights into established lattice Boltzmann simulation methods.

References

References
1.
Bhatnagar
,
P. L.
,
Gross
,
E. P.
, and
Krook
,
M.
,
1954
, “
A Model for Collision Processes in Gases—I: Small Amplitude Processes in Charged and Neutral One-Component Systems
,”
Phys. Rev.
,
94
(
3
), pp.
511
525
.10.1103/PhysRev.94.511
2.
Qian
,
Y. H.
,
D'Humières
,
D.
, and
Lallemand
,
P.
,
1992
, “
Lattice BGK Models for Navier-Stokes Equation
,”
Europhys. Lett.
,
17
(
6
), pp.
479
484
.10.1209/0295-5075/17/6/001
3.
Ansumali
,
S.
, and
Karlin
,
I. V.
,
2000
, “
Stabilization of the Lattice Boltzmann Method by the H Theorem: A Numerical Test
,”
Phys. Rev. E
,
62
(
6
), pp.
7999
8003
.10.1103/PhysRevE.62.7999
4.
Ansumali
,
S.
, and
Karlin
,
I. V.
,
2005
, “
Consistent Lattice Boltzmann Method
,”
Phys. Rev. Lett.
,
95
(
26
), p.
260605
.10.1103/PhysRevLett.95.260605
5.
Packwood
,
D.
,
2009
, “
Entropy Balance and Dispersive Oscillations in Lattice Boltzmann Models
,”
Phys. Rev. E
,
80
(
6
), p.
067701
.10.1103/PhysRevE.80.067701
6.
Jonnalagadda
,
A.
,
Sharma
,
A.
, and
Agrawal
,
A.
,
2021
, “
Single Relaxation Time Entropic Lattice Boltzmann Methods: A Developer's Perspective for Stable and Accurate Simulations
,”
Comput. Fluids
,
215
, p.
104792
.10.1016/j.compfluid.2020.104792
7.
Atif
,
M.
,
Kolluru
,
P. K.
,
Thantanapally
,
C.
, and
Ansumali
,
S.
,
2017
, “
Essentially Entropic Lattice Boltzmann Model
,”
Phys. Rev. Lett.
,
119
(
24
), p.
240602
.10.1103/PhysRevLett.119.240602
8.
Zhao
,
W.
, and
Yong
,
W.-A.
,
2019
, “
Relaxation-Rate Formula for the Entropic Lattice Boltzmann Model
,”
Chin. Phys. B
,
28
(
11
), p.
114701
.10.1088/1674-1056/ab48f0
9.
Viggen
,
E. M.
,
2014
, “
Acoustic Equations of State for Simple Lattice Boltzmann Velocity Sets
,”
Phys. Rev. E
,
90
(
1
), p.
013310
.10.1103/PhysRevE.90.013310
10.
Qian
,
Y. H.
, and
Orszag
,
S. A.
,
1993
, “
Lattice BGK Models for the Navier-Stokes Equation: Nonlinear Deviation in Compressible Regimes
,”
Europhys. Lett.
,
21
(
3
), pp.
255
259
.10.1209/0295-5075/21/3/001
11.
Montessori
,
A.
,
Falcucci
,
G.
,
Prestininzi
,
P.
,
La Rocca
,
M.
, and
Succi
,
S.
,
2014
, “
Regularized Lattice Bhatnagar-Gross-Krook Model for Two- and Three-Dimensional Cavity Flow Simulations
,”
Phys. Rev. E
,
89
(
5
), p.
053317
.10.1103/PhysRevE.89.053317
12.
Latt
,
J.
, and
Chopard
,
B.
,
2006
, “
Lattice Boltzmann Method With Regularized Pre-Collision Distribution Functions
,”
Math. Comput. Simul.
,
72
(
2–6
), pp.
165
168
.10.1016/j.matcom.2006.05.017
13.
Malaspinas
,
O.
,
2015
, “
Increasing Stability and Accuracy of the Lattice Boltzmann Scheme: Recursivity and Regularization
,” e-print ArXiv.
14.
Coreixas
,
C.
,
Wissocq
,
G.
,
Puigt
,
G.
,
Boussuge
,
J.-F.
, and
Sagaut
,
P.
,
2017
, “
Recursive Regularization Step for High-Order Lattice Boltzmann Methods
,”
Phys. Rev. E
,
96
(
3
), p.
033306
.10.1103/PhysRevE.96.033306
15.
Mattila
,
K. K.
,
Philippi
,
P. C.
, and
Hegele
,
L. A.
,
2017
, “
High-Order Regularization in Lattice-Boltzmann Equations
,”
Phys. Fluids
,
29
(
4
), p.
046103
.10.1063/1.4981227
16.
Singh
,
N.
,
Jadhav
,
R. S.
, and
Agrawal
,
A.
,
2017
, “
Derivation of Stable Burnett Equations for Rarefied Gas Flows
,”
Phys. Rev. E
,
96
(
1
), p.
013106
.10.1103/PhysRevE.96.013106
17.
Jadhav
,
R. S.
,
Singh
,
N.
, and
Agrawal
,
A.
,
2017
, “
Force-Driven Compressible Plane Poiseuille Flow by Onsager-Burnett Equations
,”
Phys. Fluids
,
29
(
10
), p.
102002
.10.1063/1.4999420
18.
Singh
,
N.
, and
Agrawal
,
A.
,
2016
, “
Onsager's-Principle-Consistent 13-Moment Transport Equations
,”
Phys. Rev. E
,
93
(
6
), p.
063111
.10.1103/PhysRevE.93.063111
19.
Mahendra
,
A. K.
,
2011
, “
Meshless Method for Slip Flows
,” Ph.D. thesis,
Homi Bhabha National Institute
,
Mumbai, India
.
20.
Chapman
,
S.
, and
Cowling
,
T.
,
1970
,
The Mathematical Theory of Non-Uniform Gases
, 3rd ed.,
Cambridge University Press
,
Cambridge, UK
.
21.
Agrawal
,
A.
,
Kushwaha
,
H. M.
, and
Jadhav
,
R. S.
,
2019
,
Microscale Flow and Heat Transfer
, 1st ed.,
Springer
,
Cham, Switzerland
.
22.
De Groot
,
S.
, and
Mazur
,
P.
,
2013
,
Non-Equilibrium Thermodynamics. Dover Books on Physics
,
Dover Publications
,
New York
.
23.
Mei
,
R.
,
Yu
,
D.
,
Shyy
,
W.
, and
Luo
,
L.-S.
,
2002
, “
Force Evaluation in the Lattice Boltzmann Method Involving Curved Geometry
,”
Phys. Rev. E
,
65
(
4
), p.
041203
.10.1103/PhysRevE.65.041203
24.
Chikatamarla
,
S. S.
, and
Karlin
,
I. V.
,
2006
, “
Entropy and Galilean Invariance of Lattice Boltzmann Theories
,”
Phys. Rev. Lett.
,
97
(
19
), p.
190601
.10.1103/PhysRevLett.97.190601
25.
Qian
,
Y.-H.
,
d'Humières
,
D.
, and
Lallemand
,
P.
,
1991
, “
A One Dimensional Lattice Boltzmann Equation With Galilean Invariance
,”
Advances in Kinetic Theory and Continuum Mechanics
,
R.
Gatignol
, and
Soubbaramayer
, eds.,
Springer
,
Berlin
, pp.
127
138
.
26.
Karlin
,
I. V.
,
Succi
,
S.
, and
Chikatamarla
,
S. S.
,
2011
, “
Comment on “Numerics of the Lattice Boltzmann Method: Effects of Collision Models on the Lattice Boltzmann Simulations
,”
Phys. Rev. E
,
84
(
6
), p.
068701
.10.1103/PhysRevE.84.068701
27.
Januszewski
,
M.
, and
Kostur
,
M.
,
2014
, “
Sailfish: A Flexible Multi-Gpu Implementation of the Lattice Boltzmann Method
,”
Comput. Phys. Commun.
,
185
(
9
), pp.
2350
2368
.10.1016/j.cpc.2014.04.018
28.
Krüger
,
T.
,
Varnik
,
F.
, and
Raabe
,
D.
,
2009
, “
Shear Stress in Lattice Boltzmann Simulations
,”
Phys. Rev. E
,
79
(
4
), p.
046704
.10.1103/PhysRevE.79.046704
You do not currently have access to this content.