Abstract

Three-dimensional continuity, momentum, and energy equations have been solved around a perforated vertical hollow cylinder to predict the buoyancy-induced flow field and the temperature distribution around it. Finite volume method (FVM) has been implemented for the discretization of the underlying governing equations. Second-order upwind scheme has been adopted to discretize the convective terms in the momentum and energy equation. Results have been obtained by varying the input parameters like hole diameter to cylinder length ratio (d/L), pitch to length ratio (P/L), angular pitch (θ), cylinder length to diameter ratio (L/D), and Rayleigh number (Ra) spanning from 0.005 to 0.08, 0.1 to 0.3333, 30 deg to 180 deg, 2 to 20, and 104 to 108, respectively. It has been found that the average surface Nusselt number (Nu) for the outer surface increases with the diameter of the hole for Ra of 106, however for Ra of 108, it marginally decreases up to d/L of 0.01 and then increases. Nu for the inner surface increases when d/L is more than 0.04 for all Ra. The cylinder with the staggered holes shows a slightly higher Nu compared to the inline holes. Nu for the inner and outer surface at a lower pitch is less than that of the higher pitch when d/L is less than 0.02 for all Ra. The heat transfer rate of the perforated cylinder is more than the nonperforated cylinder for all the cases when L/D is less than 10 and Ra less than 106. However, for Ra more than 106, the perforated cylinder always loses more heat compared to the nonperforated one for all L/D. Finally, the correlation for Nu has been proposed as a function of the pertinent input parameters for future reference in the academic as well as industrial practices.

References

1.
Sparrow
,
E. M.
, and
Lee
,
L.
,
1976
, “
Analysis of Mixed Convection About a Circular Cylinder
,”
Int. J. Heat Mass Transfer
,
19
(
2
), pp.
229
236
.10.1016/0017-9310(76)90118-6
2.
Bar-Cohen
,
A.
,
Iyengar
,
M.
, and
Benjaafar
,
S.
,
2001
, “
Design for Manufacturability of Natural Convection Cooled Heat Sinks
,”
Int. J. Trans. Phenom.
,
4
, pp.
43
57
.https://www.oldcitypublishing.com/journals/ijtp-home/ijtp-issue-contents/ijtp-volume-4-number-1-2002/ijtp-4-1-p-43-57/
3.
Xin
,
R. C.
, and
Ebadian
,
M. A.
,
1996
, “
Natural Convection Heat Transfer From Helicoidal Pipes
,”
J. Thermophys. Heat Transfer
,
10
(
2
), pp.
297
302
.10.2514/3.787
4.
McGlen
,
R. J.
,
Jachuck
,
R.
, and
Lin
,
S.
,
2004
, “
Integrated Thermal Management Techniques for High Power Electronic Devices
,”
Appl. Therm. Eng.
,
24
(
8–9
), pp.
1143
1156
.10.1016/j.applthermaleng.2003.12.029
5.
Boetcher
,
S. K. S.
,
2014
, “
Natural Convection Heat Transfer From Vertical Cylinders
,”
Natural Convection From Circular Cylinders
, Springer Briefs in Applied Sciences and Technology,
Springer
,
Cham, Switzerland
.
6.
Wendland
,
D.
,
1993
, “
Automobile Exhaust-System Steady-State Heat Transfer
,”
SAE
Paper No. 931085.10.4271/931085
7.
Zhang
,
Y.
,
Phaneuf
,
K.
,
Hanson
,
R.
, and
Showalter
,
N.
,
1992
, “
Computer Modeling on Exhaust System Heat Transfer
,”
SAE
Paper No. 920262.10.4271/920262
8.
Acharya
,
S.
,
Agrawal
,
S.
, and
Dash
,
S. K.
,
2017
, “
Numerical Analysis of Natural Convection Heat Transfer From a Vertical Hollow Cylinder Suspended in Air
,”
ASME J. Heat Transfer
,
140
(
5
), p. 052501.10.1115/1.4038478
9.
Acharya
,
S.
, and
Dash
,
S. K.
,
2017
, “
Natural Convection Heat Transfer From a Short or Long, Solid or Hollow Horizontal Cylinder Suspended in Air or Placed on Ground
,”
ASME J. Heat Transfer
,
139
(
7
), p.
072501
.10.1115/1.4035919
10.
Tsung-Yen
,
N.
,
1995
, “
Effect of Wall Condition on Natural Convection Over a Vertical Slender Hollow Circular Cylinder
,”
Appl. Sci. Res
,
54
(
1
), pp.
39
50
.10.1007/BF01666801
11.
Mamun
,
M. M. H.
,
Rahman
,
M. M.
,
Billah
,
M. M.
, and
Saidur
,
R.
,
2010
, “
A Numerical Study on the Effect of a Hollow Cylinder on Mixed Convection in a Ventilated Cavity
,”
Int. Commun. Heat Mass
,
37
(
9
), pp.
1326
1334
.10.1016/j.icheatmasstransfer.2010.07.019
12.
Rani
,
H. P.
, and
Reddy
,
G. J.
,
2012
, “
Conjugate Transient Free Convective Heat Transfer From a Vertical Slender Hollow Cylinder With Heat Generation Effect
,”
Appl. Math.
,
1
(
2
), pp.
90
98
.10.5923/j.am.20110102.15
13.
Acharya
,
S.
, and
Dash
,
S. K.
,
2018
, “
Natural Convection Heat Transfer From Perforated Hollow Cylinder With Inline and Staggered Holes
,”
ASME J. Heat Transfer
,
140
(
3
), p.
032501
.10.1115/1.4037875
14.
Ganguly
,
V. R.
, and
Dash
,
S. K.
,
2019
, “
Experimental and Numerical Study of Air Entrainment Into a Louvered Conical IRS Device and Comparison With Existing IRS Devices
,”
Int. J. Therm. Sci.
,
141
, pp.
114
132
.10.1016/j.ijthermalsci.2019.03.034
15.
Klingenberg
,
G.
,
1989
, “
Gun Muzzle Blast and Flash
,”
Propellants, Explos., Pyrotech.
,
14
(
2
), pp.
57
64
.10.1002/prep.19890140204
16.
Bejan
,
A.
,
2004
,
Convective Heat Transfer
, 3rd ed.,
Wiley
,
India
.
17.
Ansys
,
2006
, “
Ansys Fluent Theory Guide, Release 14.0,
” ANSYS, Canonsburg, PA.
18.
Senapati
,
J. R.
,
Dash
,
S. K.
, and
Roy
,
S.
,
2016
, “
Numerical Investigation of Natural Convection Heat Transfer Over Annular Finned Horizontal Cylinder
,”
Int. J. Heat Mass Transfer
,
96
, pp.
330
345
.10.1016/j.ijheatmasstransfer.2016.01.024
19.
Churchill
,
S. W.
, and
Chu
,
H. H. S.
,
1975
, “
Correlating Equations for Laminar and Turbulent Free Convection From a Vertical Plate
,”
Int. J. Heat Mass Transfer
,
18
(
11
), pp.
1323
29
.10.1016/0017-9310(75)90243-4
20.
Minkowycz
,
W.
, and
Sparrow
,
E.
,
1974
, “
Local Non Similar Solutions for Natural Convection on a Vertical Cylinder
,”
ASME J. Heat Transfer
,
96
(
2
), pp.
178
–1
83
.10.1115/1.3450161
21.
Jafarpur
,
K.
, and
Yovanovich
,
M. M.
,
1992
, “
Laminar Free Convective Heat Transfer From Isothermal Spheres: A New Analytical Method
,”
Int. J. Heat Mass Transfer
,
35
(
9
), pp.
2195
2201
.10.1016/0017-9310(92)90063-X
22.
Awasarmol
,
U. V.
, and
Pise
,
A. T.
,
2015
, “
An Experimental Investigation of Natural Convection Heat Transfer Enhancement From Perforated Rectangular Fins Array at Different Inclinations
,”
Exp. Therm. Fluid Sci.
,
68
, pp.
145
154
.10.1016/j.expthermflusci.2015.04.008
23.
Ahmadi
,
M.
,
Fakoor-Pakdaman
,
M.
, and
Bahrami
,
M.
,
2015
, “
Natural Convection From Vertical Parallel Plates: An Integral Method Solution
,”
J. Thermophys. Heat Transfer
,
29
(
1
), pp.
140
149
.10.2514/1.T4308
You do not currently have access to this content.