Abstract

An experimental and numerical smoothed particle hydrodynamics (SPH) analysis was performed for the convective flow arising from a horizontal, thin cylindrical heat source enclosed in a glycerin-filled, slender enclosure at low Rayleigh numbers (1.18Ra242). Both the experiments and the SPH calculations were performed for positive (0.1ΔT10 K) and negative (10ΔT0.1 K) temperature differences between the source and the surrounding fluid. In all cases, a pair of steady, counter-rotating vortices is formed, accompanied by a plume of vertically ascending flow just above the source for ΔT>0 and a vertically descending flow just below the source for ΔT<0. The maximum flow velocities always occur within the ascending/descending plumes. The SPH predictions are found to match the experimental observations acceptably well with root-mean-square errors (RMSE) in the velocity profiles of the order of 105 m s−1. The fact that the SPH method is able to reveal the detailed features of the flow phenomenon demonstrates the correctness of the approach.

References

1.
Zhang
,
X.
,
Zhang
,
Y.
,
Liu
,
Z.
, and
Liu
,
J.
,
2020
, “
Analysis of Heat Transfer and Flow Characteristics in Typical Cambered Ducts
,”
Int. J. Therm. Sci.
,
150
, p.
106226
.10.1016/j.ijthermalsci.2019.106226
2.
Deschamps
,
V.
, and
Desrayaud
,
G.
,
1994
, “
Modeling a Horizontal Heat-Flux Cylinder as a Line Source
,”
J. Thermophys. Heat Transfer
,
8
(
1
), pp.
84
91
.10.2514/3.504
3.
Lauriat
,
G.
, and
Desrayaud
,
G.
,
1994
, “
Buoyant Plane Plumes From Heated Horizontal Confined Wires and Cylinders
,”
Sadhana
,
19
(
5
), pp.
671
703
.10.1007/BF02744400
4.
Liñán
,
A.
, and
Kurdyumov
,
V. N.
,
1998
, “
Laminar Free Convection Induced by a Line Heat Source, and Heat Transfer From Wires at Small Grashof Numbers
,”
J. Fluid Mech.
,
362
, pp.
199
227
.10.1017/S0022112098008830
5.
Cesini
,
G.
,
Paroncini
,
M.
,
Cortella
,
G.
, and
Manzan
,
M.
,
1999
, “
Natural Convection From a Horizontal Cylinder in a Rectangular Cavity
,”
Int. J. Heat Mass Transfer
,
42
(
10
), pp.
1801
1811
.10.1016/S0017-9310(98)00266-X
6.
Kuehn
,
T. H.
, and
Goldstein
,
R. J.
,
1980
, “
Numerical Solution to the Navier-Stokes Equations for Laminar Natural Convection About a Horizontal Isothermal Circular Cylinder
,”
Int. J. Heat Mass Transfer
,
23
(
7
), pp.
971
979
.10.1016/0017-9310(80)90071-X
7.
Farouk
,
B.
, and
GüC¸Eri
,
S. I.
,
1981
, “
Natural Convection From a Horizontal Cylinder—Laminar Regime
,”
ASME J. Heat Transfer
,
103
(
3
), pp.
522
527
.10.1115/1.3244495
8.
Fujii
,
T.
,
Fujii
,
M.
, and
Honda
,
T.
,
1982
, “
Theoretical and Experimental Studies of the Free Convection Around a Long Horizontal Thin Wire in Air
,”
Proceedings of the Seventh International Heat Transfer Conference, Vol. 6, International Heat Transfer Conferences
(
IHTC
), IHTC Digital Library, Munich, Germany, Sept. 6–10, pp.
311
316
.10.1615/IHTC7.3300
9.
Karim
,
F.
,
Farouk
,
B.
, and
Namer
,
I.
,
1986
, “
Natural Convection Heat Transfer From a Horizontal Cylinder Between Vertical Confining Adiabatic Walls
,”
ASME J. Heat Transfer
,
108
(
2
), pp.
291
298
.10.1115/1.3246918
10.
Saitoh
,
T.
,
Sajiki
,
T.
, and
Maruhara
,
K.
,
1993
, “
Bench Mark Solutions to Natural Convection Heat Transfer Problem Around a Horizontal Circular Cylinder
,”
Int. J. Heat Mass Transfer
,
36
(
5
), pp.
1251
1259
.10.1016/S0017-9310(05)80094-8
11.
Atmane
,
M. A.
,
Chan
,
V. S. S.
, and
Murray
,
D. B.
,
2003
, “
Natural Convection Around a Horizontal Heated Cylinder: The Effects of Vertical Confinement
,”
Int. J. Heat Mass Transfer
,
46
(
19
), pp.
3661
3672
.10.1016/S0017-9310(03)00154-6
12.
Angeli
,
D.
,
Levoni
,
P.
, and
Barozzi
,
G. S.
,
2008
, “
Numerical Predictions for Stable Buoyant Regimes Within a Square Cavity Containing a Heated Horizontal Cylinder
,”
Int. J. Heat Mass Transfer
,
51
(
3–4
), pp.
553
565
.10.1016/j.ijheatmasstransfer.2007.05.007
13.
Kitamura
,
K.
,
Kami-Iwa
,
F.
, and
Misumi
,
T.
,
1999
, “
Heat Transfer and Fluid Flow of Natural Convection Around Large Horizontal Cylinders
,”
Int. J. Heat Mass Transfer
,
42
(
22
), pp.
4093
4106
.10.1016/S0017-9310(99)00079-4
14.
Misumi
,
T.
,
Suzuki
,
K.
, and
Kitamura
,
K.
,
2003
, “
Fluid Flow and Heat Transfer of Natural Convection Around Large Horizontal Cylinders: Experiments With Air
,”
Heat Transfer—Asian Res.
,
32
(
4
), pp.
293
305
.10.1002/htj.10080
15.
Reymond
,
O.
,
Murray
,
D. B.
, and
O'Donovan
,
T. S.
,
2008
, “
Natural Convection Heat Transfer From Two Horizontal Cylinders
,”
Exp. Therm. Fluid Sci.
,
32
(
8
), pp.
1702
1709
.10.1016/j.expthermflusci.2008.06.005
16.
Koizumi
,
H.
, and
Hosokawa
,
I.
,
1996
, “
Chaotic Behavior and Heat Transfer Performance of the Natural Convection Around a Hot Horizontal Cylinder Affected by a Flat Ceiling
,”
Int. J. Heat Mass Transfer
,
39
(
5
), pp.
1081
1091
.10.1016/0017-9310(95)00185-9
17.
Ghaddar
,
N. K.
,
1992
, “
Natural Convection Heat Transfer Between a Uniformly Heated Cylindrical Element and Its Rectangular Enclosure
,”
Int. J. Heat Mass Transfer
,
35
(
10
), pp.
2327
2334
.10.1016/0017-9310(92)90075-4
18.
Ghaddar
,
N. K.
, and
Thiele
,
F.
,
1994
, “
Natural Convection Over a Rotating Cylindrical Heat Source in a Rectangular Enclosure
,”
Numer. Heat Transfer, Part A
,
26
(
6
), pp.
701
717
.10.1080/10407789408956018
19.
De
,
A. K.
, and
Dalal
,
A.
,
2006
, “
A Numerical Study of Natural Convection Around a Square, Horizontal, Heated Cylinder Placed in an Enclosure
,”
Int. J. Heat Mass Transfer
,
49
(
23–24
), pp.
4608
4623
.10.1016/j.ijheatmasstransfer.2006.04.020
20.
Kim
,
B. S.
,
Lee
,
D. S.
,
Ha
,
M. Y.
, and
Yoon
,
H. S.
,
2008
, “
A Numerical Study of Natural Convection in a Square Enclosure With a Circular Cylinder at Different Vertical Locations
,”
Int. J. Heat Mass Transfer
,
51
(
7–8
), pp.
1888
1906
.10.1016/j.ijheatmasstransfer.2007.06.033
21.
Adnani
,
M.
,
Meziani
,
B.
,
Ourrad
,
O.
, and
Zitoune
,
M.
,
2016
, “
Natural Convection in a Square Cavity: Numerical Study for Different Values of Prandtl Number
,”
Fluid Dyn. Mater. Process.
,
12
(
1
), pp.
1
14
.10.3970/fdmp.2016.012.001
22.
Cleary
,
P. W.
,
1998
, “
Modelling Confined Multi-Material Heat and Mass Flows Using SPH
,”
Appl. Math. Modell.
,
22
(
12
), pp.
981
993
.10.1016/S0307-904X(98)10031-8
23.
Cleary
,
P. W.
, and
Monaghan
,
J. J.
,
1999
, “
Conduction Modelling Using Smoothed Particle Hydrodynamics
,”
J. Comput. Phys.
,
148
(
1
), pp.
227
264
.10.1006/jcph.1998.6118
24.
Moballa
,
B.
,
Chern
,
M.-J.
, and
Odhiambo
,
E.
,
2013
, “
Incompressible Smoothed Particle Hydrodynamics Modeling of Thermal Convection
,”
Interact. Multiscale Mech.
,
6
(
2
), pp.
211
235
.10.12989/imm.2013.6.2.211
25.
Szewc
,
K.
,
Pozorski
,
J.
, and
Tanière
,
A.
,
2011
, “
Modeling of Natural Convection With Smoothed Particle Hydrodynamics: Non-Boussinesq Formulation
,”
Int. J. Mass Heat Transfer
,
54
(
23–24
), pp.
4807
4816
.10.1016/j.ijheatmasstransfer.2011.06.034
26.
Yang
,
X.
, and
Kong
,
S.-C.
,
2019
, “
Numerical Study of Natural Convection in a Horizontal Concentric Annulus Using Smoothed Particle Hydrodynamics
,”
Eng. Anal. Boundary Elem.
,
102
, pp.
11
20
.10.1016/j.enganabound.2019.02.007
27.
Garoosi
,
F.
, and
Shakibaeinia
,
A.
,
2020
, “
Numerical Simulation of Entropy Generation Due to Natural Convection Heat Transfer Using Kernel Derivative-Free (KDF) Incompressible Smoothed Particle Hydrodynamics (ISPH) Model
,”
Int. J. Mass Heat Transfer
,
150
, p.
119377
.10.1016/j.ijheatmasstransfer.2020.119377
28.
Garoosi
,
F.
, and
Shakibaeinia
,
A.
,
2020
, “
An Improved High-Order Isph Method for Simulation of Free-Surface Flows and Convection Heat Transfer
,”
Powder Technol.
,
376
, pp.
668
696
.10.1016/j.powtec.2020.08.074
29.
Hopp-Hirschler
,
M.
,
Shadloo
,
M. S.
, and
Nieken
,
U.
,
2018
, “
A Smoothed Particle Hydrodynamics Approach for Thermo-Capillary Flows
,”
Comput. Fluids
,
176
, pp.
1
19
.10.1016/j.compfluid.2018.09.010
30.
Nasiri
,
H.
,
Jamalabadi
,
M. Y. A.
,
Sadeghi
,
R.
,
Safaei
,
M. R.
,
Nguyen
,
T. K.
, and
Shadloo
,
M. S.
,
2019
, “
A Smoothed Particle Hydrodynamics Approach for Numerical Simulation of Nano-Fluid Flows. Application to Forced Convection Heat Transfer Over a Horizontal Cylinder
,”
J. Therm. Anal. Calorim.
,
135
(
3
), pp.
1733
1741
.10.1007/s10973-018-7022-4
31.
Hopp-Hirschler
,
M.
,
Shadloo
,
M. S.
, and
Nieken
,
U.
,
2019
, “
Viscous Fingering Phenomena in the Early Stage of Polymer Membrane Formation
,”
J. Fluid Mech.
,
864
, pp.
97
140
.10.1017/jfm.2019.4
32.
Becker
,
M.
, and
Teschner
,
M.
,
2007
, “
Weakly Compressible Sph for Free Surface Flows
,”
Proceedings of the ACM SIGGRAPH/Europhysics Symposium on Computer Animation, ACM SIGGRAPH/Europhysics
, ACM Press, San Diego, Aug. 2–4, pp.
209
217
.
33.
Angeli
,
D.
,
Pagano
,
A.
,
Corticelli
,
M. A.
,
Fichera
,
A.
, and
Barozzi
,
G. S.
,
2011
, “
Bifurcations of Natural Convection Flows From an Enclosed Cylindrical Heat Source
,”
Front. Heat Mass Transfer
,
2
(
2
), p.
023003
.10.5098/hmt.v2.2.3003
34.
Fiscaletti
,
D.
,
Angeli
,
D.
,
Tarozzi
,
L.
, and
Barozzi
,
G. S.
,
2013
, “
Buoyancy-Induced Transitional Flows Around an Enclosed Horizontal Cylinder: An Experiment
,”
Int. J. Heat Mass Transfer
,
58
(
1–2
), pp.
619
631
.10.1016/j.ijheatmasstransfer.2012.11.039
35.
Riyi
,
L.
,
Fangzheng
,
W.
, and
Xinwei
,
W.
,
2012
, “
Heating of Heavy Oil by Circulating Hot Water in Closed Double Casing in Ultra-Deep Wells
,”
Pet. Sci.
,
9
(
4
), pp.
506
510
10.1007/s12182-012-0235-4.
36.
Zhao
,
J.
,
Dong
,
H.
,
Wang
,
X.
, and
Fu
,
X.
,
2017
, “
Research on Heat Transfer Characteristic of Crude Oil During the Tubular Heating Process in the Floating Roof Tank
,”
Case Stud. Therm. Eng.
,
10
, pp.
142
153
.10.1016/j.csite.2017.05.006
37.
Gray
,
D. D.
, and
Giorgini
,
D. B.
,
1976
, “
The Validity of the Boussinesq Approximation for Liquids and Gases
,”
Int. J. Mass Heat Transfer
,
19
(
5
), pp.
545
551
.10.1016/0017-9310(76)90168-X
38.
Batchelor
,
G. K.
,
1974
,
Introduction to Fluid Dynamics
,
Cambridge University Press
,
Cambridge, UK
.
39.
Monaghan
,
J. J.
,
1992
, “
Smoothed Particle Hydrodynamics
,”
Annu. Rev. Astron. Astrophys.
,
30
(
1
), pp.
543
574
.10.1146/annurev.aa.30.090192.002551
40.
Gómez-Gesteira
,
M.
,
Rogers
,
B. D.
,
Crespo
,
A. J. C.
,
Dalrymple
,
R. A.
,
Narayanaswamy
,
M.
, and
Domínguez
,
J. M.
,
2012
, “
Sphysics–Development of a Free-Surface Fluid Solver–Part 1: Theory and Formulations
,”
Comput. Geosci.
,
48
, pp.
289
299
.10.1016/j.cageo.2012.02.029
41.
Liu
,
M. B.
, and
Liu
,
G. R.
,
2010
, “
Smoothed Particle Hydrodynamics (SPH): An Overview and Recent Developments
,”
Arch. Comput. Methods Eng.
,
17
(
1
), pp.
25
76
.10.1007/s11831-010-9040-7
42.
Dehnen
,
W.
, and
Aly
,
H.
,
2012
, “
Improving Convergence in Smoothed Particle Hydrodynamics Simulations Without Pairing Instability
,”
Mon. Not. R. Astronom. Soc.
,
425
(
2
), pp.
1068
1082
.10.1111/j.1365-2966.2012.21439.x
43.
Zhu
,
Q.
,
Hernquist
,
L.
, and
Li
,
Y.
,
2015
, “
Numerical Convergence in Smoothed Particle Hydrodynamics
,”
Astrophys. J.
,
800
(
1
), p.
6
.10.1088/0004-637X/800/1/6
44.
Sigalotti
,
L. D. G.
,
Rendón
,
O.
,
Klapp
,
J.
,
Vargas
,
C. A.
, and
Cruz
,
F.
,
2019
, “
A New Insight Into the Consistency of the SPH Interpolation Formula
,”
Appl. Math. Comput.
,
356
, pp.
50
73
.10.1016/j.amc.2019.03.018
45.
Rosswog
,
S.
,
2015
, “
Sph Methods in the Modelling of Compact Objects
,”
Living Rev. Comput. Astrophys.
,
1
(
1
), pp.
1
109
.10.1007/lrca-2015-1
46.
Crespo
,
A. J. C.
,
Gómez-Gesteira
,
M.
, and
Dalrymple
,
R. A.
,
2007
, “
Boundary Conditions Generated by Dynamic Particles in SPH Methods
,”
Comput., Mater. Continua
,
5
, pp.
173
184
.10.3970/cmc.2007.005.173
47.
Keane
,
R. D.
, and
Adrian
,
R. J.
,
1990
, “
Optimization of Particle Image Velocimeters. Part I: Double Pulsed Systems
,”
Meas. Sci. Technol.
,
1
(
11
), pp.
1202
1215
.10.1088/0957-0233/1/11/013
You do not currently have access to this content.