Abstract

An iterative design algorithm is used to adjust the shape of a conducting solid body that is subjected to a surface heat flux and cooled simultaneously by free convection and radiation in order to reduce the overall thermal resistance. Parametric simulations are carried out over a range of domain dimensions and emissivity values to determine the sensitivity of (i) the predicted solid shape and (ii) the overall thermal resistance to the relative strength of convection or radiation. Results show that, for the conditions considered, surface radiation has a significant influence on the predicted optimal solid geometry and overall thermal resistance.

References

References
1.
Bar-Cohen
,
A.
,
1979
, “
Fin Thickness for an Optimized Natural Convection Array of Rectangular Fins
,”
ASME J. Heat Transfer
,
101
(
3
), pp.
564
566
.10.1115/1.3451032
2.
Bendsøe
,
M. P.
, and
Sigmund
,
O.
,
2003
,
Topology Optimization: Theory, Methods, and Applications
,
Springer
,
Berlin
.
3.
Li
,
Q.
,
Steven
,
G. P.
,
Xie
,
Y. M.
, and
Querin
,
O. M.
,
2004
, “
Evolutionary Topology Optimization for Temperature Reduction of Heat Conducting Fields
,”
Int. J. Heat Mass Transfer
,
47
(
23
), pp.
5071
5083
.10.1016/j.ijheatmasstransfer.2004.06.010
4.
Gersborg-Hansen
,
A.
,
Bendsøe
,
M. P.
, and
Sigmund
,
O.
,
2006
, “
Topology Optimization of Heat Conduction Problems Using the Finite Volume Method
,”
Struct. Multidiscip. Optim.
,
31
(
4
), pp.
251
259
.10.1007/s00158-005-0584-3
5.
Gao
,
T.
,
Zhang
,
W. H.
,
Zhu
,
J. H.
,
Xu
,
Y. J.
, and
Bassir
,
D. H.
,
2008
, “
Topology Optimization of Heat Conduction Problem Involving Design-Dependent Heat Load Effect
,”
Finite Elem. Anal. Des.
,
44
(
14
), pp.
805
813
.10.1016/j.finel.2008.06.001
6.
Marck
,
G.
,
Nemer
,
M.
,
Harion
,
J. L.
,
Russeil
,
S.
, and
Bougeard
,
D.
,
2012
, “
Topology Optimization Using the SIMP Method for Multiobjective Problems
,”
Numer. Heat Transfer B
,
61
(
6
), pp.
439
470
.10.1080/10407790.2012.687979
7.
Dirker
,
J.
, and
Meyer
,
J. P.
,
2013
, “
Topology Optimization for an Internal Heat-Conduction Cooling Scheme in a Square Domain for High Heat Flux Applications
,”
ASME J. Heat Transfer
,
135
(
11
), p.
111010
.10.1115/1.4024615
8.
Xia
,
Q.
,
Shi
,
T.
, and
Xia
,
L.
,
2018
, “
Topology Optimization for Heat Conduction by Combining Level Set Method and BESO Method
,”
Int. J. Heat Mass Transfer
,
127
, pp.
200
209
.10.1016/j.ijheatmasstransfer.2018.08.036
9.
Yin
,
L.
, and
Ananthasuresh
,
G.
,
2002
, “
A Novel Topology Design Scheme for the Multi-Physics Problems of Electro-Thermally Actuated Compliant Micromechanisms
,”
Sens. Actuators, A
,
97–98
, pp.
599
609
.10.1016/S0924-4247(01)00853-6
10.
Bruns
,
T. E.
,
2007
, “
Topology Optimization of Convection-Dominated, Steady-State Heat Transfer Problems
,”
Int. J. Heat Mass Transfer
,
50
(
15–16
), pp.
2859
2873
.10.1016/j.ijheatmasstransfer.2007.01.039
11.
Ahn
,
S. H.
, and
Cho
,
S.
,
2010
, “
Level Set-Based Topological Shape Optimization of Heat Conduction Problems Considering Design-Dependent Convection Boundary
,”
Numer. Heat Transfer B
,
58
(
5
), pp.
304
322
.10.1080/10407790.2010.522869
12.
Yoon
,
G. H.
,
2010
, “
Topological Design of Heat Dissipating Structure With Forced Convective Heat Transfer
,”
J. Mech. Sci. Technol.
,
24
(
6
), pp.
1225
1233
.10.1007/s12206-010-0328-1
13.
Koga
,
A. A.
,
Lopes
,
E. C. C.
,
Nova
,
H. F. V.
,
de Lima
,
C. R.
, and
Silva
,
E. C. N.
,
2013
, “
Development of Heat Sink Device by Using Topology Optimization
,”
Int. J. Heat Mass Transfer
,
64
, pp.
759
772
.10.1016/j.ijheatmasstransfer.2013.05.007
14.
Alexandersen
,
J.
,
Aage
,
N.
,
Andreasen
,
C. S.
, and
Sigmund
,
O.
,
2014
, “
Topology Optimisation for Natural Convection Problems
,”
Int. J. Numer. Methods Fluids
,
76
(
10
), pp.
699
721
.10.1002/fld.3954
15.
Alexandersen
,
J.
,
Sigmund
,
O.
, and
Aage
,
N.
,
2016
, “
Large Scale Three-Dimensional Topology Optimisation of Heat Sinks Cooled by Natural Convection
,”
Int. J. Heat Mass Transfer
,
100
, pp.
876
891
.10.1016/j.ijheatmasstransfer.2016.05.013
16.
Alexandersen
,
J.
,
Sigmund
,
O.
,
Meyer
,
K. E.
, and
Lazarov
,
B. S.
,
2018
, “
Design of Passive Coolers for Light-Emitting Diode Lamps Using Topology Optimisation
,”
Int. J. Heat Mass Transfer
,
122
, pp.
138
149
.10.1016/j.ijheatmasstransfer.2018.01.103
17.
Asmussen
,
J.
,
Alexandersen
,
J.
,
Sigmund
,
O.
, and
Andreasen
,
C. S.
,
2019
, “
A ‘Poor Man's’ Approach to Topology Optimization of Natural Convection Problems
,”
Struct. Multidiscip. Optim.
,
59
(
4
), pp.
1105
1124
.10.1007/s00158-019-02215-9
18.
Lei
,
T.
,
Alexandersen
,
J.
,
Lazarov
,
B.
,
Wang
,
F.
,
Haertel
,
J.
,
De Angelis
,
S.
,
Sanna
,
S.
,
Sigmund
,
O.
, and
Engelbrecht
,
K.
,
2018
, “
Investment Casting and Experimental Testing of Heat Sinks Designed by Topology Optimization
,”
Int. J. Heat Mass Transfer
,
127
, pp.
396
412
.10.1016/j.ijheatmasstransfer.2018.07.060
19.
Castro
,
D. A.
,
Kiyono
,
C. Y.
, and
Silva
,
E. C. N.
,
2015
, “
Design of Radiative Enclosures by Using Topology Optimization
,”
Int. J. Heat Mass Transfer
,
88
, pp.
880
890
.10.1016/j.ijheatmasstransfer.2015.04.077
20.
Sevart
,
C. D.
, and
Bergman
,
T. L.
,
2019
, “
An Iterative Design Method to Reduce the Overall Thermal Resistance in a Conjugate Conduction-Free Convection Configuration
,”
Front. Heat Mass Transfer
,
13
, p.
10
.10.5098/hmt.13.18
21.
Patankar
,
S. V.
,
1980
,
Numerical Heat Transfer and Fluid Flow
,
McGraw-Hill
,
New York
.
22.
Bergman
,
T. L.
, and
Lavine
,
A. S.
,
2017
,
Fundamentals of Heat and Mass Transfer
,
Wiley
,
Hoboken, NJ
.
23.
Hottel
,
H. C.
,
1954
, “Radiant Heat Transmission”
Heat Transmission
,
W. H.
McAdams
, ed.,
McGraw-Hill
,
New York
.
24.
Emery
,
A. F.
,
Johansson
,
O.
,
Lobo
,
M.
, and
Abrous
,
A.
,
1991
, “
A Comparative-Study of Methods for Computing the Diffuse-Radiation View Factors for Complex Structures
,”
ASME J. Heat Transfer
,
113
(
2
), pp.
413
412
.10.1115/1.2910577
25.
Eftychiou
,
M. A.
,
Bergman
,
T. L.
, and
Masada
,
G. Y.
,
1993
, “
A Detailed Thermal Model of the Infrared Reflow Soldering Process
,”
ASME J. Electron. Packag.
,
115
(
1
), pp.
55
62
.10.1115/1.2909302
26.
Holtzman
,
G. A.
,
Hill
,
R. W.
, and
Ball
,
K. S.
,
2000
, “
Laminar Natural Convection in Isosceles Triangular Enclosures Heated From Below and Symmetrically Cooled From Above
,”
ASME J. Heat Transfer
,
122
(
3
), pp.
485
491
.10.1115/1.1288707
27.
Rowley
,
J. C.
, and
Payne
,
J. B.
,
1964
, “
Steady State Temperature Solution for a Heat Generating Circular Cylinder Cooled by a Ring of Holes
,”
ASME J. Heat Transfer
,
86
(
4
), pp.
531
536
.10.1115/1.3688737
28.
Chai
,
J. C.
,
Lee
,
H. S.
, and
Patankar
,
S. V.
,
1994
, “
Treatment of Irregular Geometries Using a Cartesian Coordinates Finite Volume Radiation Heat Transfer Procedure
,”
Numer. Heat Transfer, B
,
26
(
2
), pp.
225
235
.10.1080/10407799408914927
29.
Akiyama
,
M.
, and
Chong
,
Q. P.
,
1997
, “
Numerical Analysis of Natural Convection With Surface Radiation in a Square Enclosure
,”
Numer. Heat Transfer A
,
32
(
4
), pp.
419
433
.10.1080/10407789708913899
You do not currently have access to this content.