Abstract

This paper reports the numerical investigations for steady-state natural convection in power-law fluids inside a square enclosure embedded with bottom discrete heaters. The lattice Boltzmann method (LBM) is employed to model the flow and heat transfer phenomenon at different combinations of power-law index, Rayleigh number, and heat source length for a constant Prandtl number. The buoyancy force is incorporated in the collision term of the LBM through Boussinesq approximation. Simulation outcomes are furnished using streamlines, temperature contours, velocity profiles, and variation of heat transfer on the nonadiabatic walls to probe natural convection phenomena. The results indicate that the temperature and the flow fields in the enclosure are symmetric about the vertical centerline. The detailed physical interpretations have been provided for the reported results. Further, the increase in the power-law index means a rise in viscosity and a decrease in thermal energy transport for other constant parameters. The outcomes also specify that the intensity of circulation and heat transfer enhances with the increase of Rayleigh number and size of the localized heater. Finally, though, a rise in the size of the confined heat source enhances the rate of total thermal transport, it does not change the trend of fluid flow and local heat transfer rate.

References

1.
Ostrach
,
S.
,
1988
, “
Natural Convection in Enclosures
,”
ASME J. Heat Transfer
,
110
(
4b
), pp.
1175
1190
.10.1115/1.3250619
2.
Khalifa
,
A.-J. N.
,
2001
, “
Natural Convective Heat Transfer Coefficient- A Review, II. Surfaces in Two- and Three-Dimensional Enclosures
,”
Energy Convers. Manage.
,
42
(
4
), pp.
505
517
.10.1016/S0196-8904(00)00043-1
3.
Chu
,
T. Y.
, and
Hickox
,
C. E.
,
1990
, “
Thermal Convection With Large Viscosity Variation in an Enclosure With Localized Heating
,”
ASME J. Heat Transfer
,
112
(
2
), pp.
388
395
.10.1115/1.2910389
4.
Ganzarolli
,
M. M.
, and
Milanez
,
L. F.
,
1995
, “
Natural Convection Heat Transfer in Rectangular Enclosures Heated From Below and Symmetrically Cooled From the Sides
,”
Int. J. Heat Mass Transfer
,
38
(
6
), pp.
1063
1073
.10.1016/0017-9310(94)00217-J
5.
Aydin
,
O.
, and
Yang
,
W.-J.
,
2000
, “
Natural Convection in Enclosures With Localized Heating From Below and Symmetrical Cooling From Sides
,”
Int. J. Numer. Methods Heat Fluid Flow
,
10
(
5
), pp.
518
529
.10.1108/09615530010338196
6.
Calcagni
,
B.
,
Marsili
,
F.
, and
Paroncini
,
M.
,
2005
, “
Natural Convective Heat Transfer in Square Enclosures Heated From Below
,”
App. Therm. Eng.
,
25
(
16
), pp.
2522
2531
.10.1016/j.applthermaleng.2004.11.032
7.
Sharma
,
A. K.
,
Velusamy
,
K.
, and
Balaji
,
C.
,
2007
, “
Turbulent Natural Convection in an Enclosure With Localized Heating From Below
,”
Int. J. Therm. Sci.
,
46
(
12
), pp.
1232
1241
.10.1016/j.ijthermalsci.2007.01.010
8.
Bird
,
R. B.
,
Armstrong
,
R. C.
, and
Hassager
,
O.
,
1987
, “
Dynamics of Polymeric Liquids
,”
Fluid Mechanics
, 2nd ed., Vol.
1
,
Wiley
,
New York
.
9.
Ozoe
,
H.
, and
Churchill
,
S.
,
1972
, “
Hydrodynamic Stability and Natural Convection in Ostwald-De Waele and Ellis Fluids: The Development of a Numerical Solution
,”
AiChe J.
,
18
(
6
), pp.
1196
1207
.10.1002/aic.690180617
10.
Ohta
,
M.
,
Ohta
,
M.
,
Akiyoshi
,
M.
, and
Obata
,
E.
,
2002
, “
A Numerical Study on Natural Convective Heat Transfer of Pseudo Plastic Fluids in a Square Cavity
,”
Numer. Heat Transfer, Part A
,
41
(
4
), pp.
357
372
.10.1080/104077802317261218
11.
Inaba
,
H.
,
Dai
,
C.
, and
Horibe
,
A.
,
2003
, “
Natural Convection Heat Transfer of Micro-Emulsion Phase-Change-Material Slurry in Rectangular Cavities Heated From Below and Cooled From Above
,”
Int. J. Heat Mass Transfer
,
46
(
23
), pp.
4427
4438
.10.1016/S0017-9310(03)00289-8
12.
Kim
,
G. B.
,
Hyun
,
J. M.
, and
Kwak
,
H. S.
,
2003
, “
Transient Buoyant Convection of a Power-Law Non-Newtonian Fluid in an Enclosure
,”
Int. J. Heat Mass Transfer
,
46
(
19
), pp.
3605
3617
.10.1016/S0017-9310(03)00149-2
13.
Lamsaadi
,
M.
,
Naïmi
,
M.
,
Hasnaoui
,
M.
, and
Mamou
,
M.
,
2006
, “
Natural Convection in a Vertical Rectangular Cavity Filled With a Non-Newtonian Power Law Fluid and Subjected to Horizontal Temperature Gradient
,”
Numer. Heat Transfer, Part A
,
49
(
10
), pp.
969
990
.10.1080/10407780500324988
14.
Turan
,
O.
,
Sachdeva
,
A.
,
Chakraborty
,
N.
, and
Poole
,
R. J.
,
2011
, “
Laminar Natural Convection of Power Law Fluids in a Square Enclosure With Differentially Heated Side Walls Subjected to Constant Temperature
,”
J. Non-Newtonian Fluid Mech.
,
166
(
17–18
), pp.
1049
1063
.10.1016/j.jnnfm.2011.06.003
15.
Benzi
,
R.
,
Succi
,
S.
, and
Vergassola
,
M.
,
1992
, “
The Lattice Boltzmann Equation: Theory and Applications
,”
Phys. Rep.
,
222
(
3
), pp.
145
197
.10.1016/0370-1573(92)90090-M
16.
Chen
,
S.
, and
Doolen
,
G. D.
,
1998
, “
Lattice Boltzmann Method for Fluid Flows
,”
Annu. Rev. Fluid Mech.
,
30
(
1
), pp.
329
364
.10.1146/annurev.fluid.30.1.329
17.
Succi
,
S.
,
2001
,
The Lattice Boltzmann Equation for Fluid Dynamics and Beyond
,
Oxford University Press
,
Oxford, UK
.
18.
Sukop
,
M. C.
, and
Thorne
,
D. T.
,
2006
,
Lattice Boltzmann Modeling: An Introduction for Geoscientists and Engineers
,
Springer
,
Berlin
.
19.
Guo
,
Z.
,
Shi
,
B.
, and
Zheng
,
C.
,
2002
, “
A Coupled Lattice BGK Model for the Boussinesq Equations
,”
Int. J. Numer. Methods Fluids
,
39
(
4
), pp.
325
342
.10.1002/fld.337
20.
Peng
,
Y.
,
Shu
,
C.
, and
Chew
,
Y. T.
,
2003
, “
Simplified Thermal Lattice Boltzmann Model for Incompressible Thermal Flows
,”
Phys. Rev. E
,
68
(
2
), p.
026701
.10.1103/PhysRevE.68.026701
21.
Shu
,
C.
,
Peng
,
Y.
, and
Chew
,
Y. T.
,
2002
, “
Simulation of Natural Convection in a Square Cavity by Taylor Series Expansion-and Least Squares-Based Lattice Boltzmann Method
,”
Int. J. Mod. Phy. C
,
13
(
10
), pp.
1399
1414
.10.1142/S0129183102003966
22.
D'Orazio
,
A.
,
Corcione
,
M.
, and
Celata
,
G. P.
,
2004
, “
Application to Natural Convection Enclosed Flows of a Lattice Boltzmann BGK Model Coupled With a General Purpose Thermal Boundary Condition
,”
Int. J. Therm. Sci.
,
43
(
6
), pp.
575
586
.10.1016/j.ijthermalsci.2003.11.002
23.
Jami
,
M.
,
Amraqui
,
S.
,
Mezrhab
,
A.
, and
Abid
,
C.
,
2008
, “
Numerical Study of Natural Convection in a Cavity of High Aspect Ratio by Using the Lattice Boltzmann Method
,”
Int. J. Numer. Meth. Eng.
,
73
(
12
), pp.
1727
1738
.10.1002/nme.2139
24.
Dixit
,
H. N.
, and
Babu
,
V.
,
2006
, “
Simulation of High Rayleigh Number Natural Convection in a Square Cavity Using the Lattice Boltzmann Method
,”
Int. J. Heat Mass Transfer
,
49
(
3-4
), pp.
727
739
.10.1016/j.ijheatmasstransfer.2005.07.046
25.
Sajjadi
,
H.
,
Gorji
,
M.
,
Deh
,
S. F. H.
,
Kefayati
,
G. R.
, and
Ganji
,
D. D.
,
2011
, “
Numerical Analysis of Turbulent Natural Convection in Square Cavity Using Large-Eddy Simulation in Lattice Boltzmann Method,” Iran
,”
J. Sci. Technol.Trans. Mech. Eng.
,
35
(
M2
), pp.
133
142
.10.22099/IJSTM.2011.901
26.
Barrios
,
G.
,
Rechtman
,
R.
,
Rojas
,
J.
, and
Tovar
,
R.
,
2005
, “
The Lattice Boltzmann Equation for Natural Convection in a Two-Dimensional Cavity With a Partially Heated Wall
,”
ASME J. Fluid Mech.
,
522
, pp.
91
100
.10.1017/S0022112004001983
27.
Delavar
,
M. A.
,
Farhadi
,
M.
, and
Sedighi
,
K.
,
2011
, “
Effect of Discrete Heater at the Vertical Wall of the Cavity Over the Heat Transfer and Entropy Generation Using Lattice Boltzmann Method
,”
Therm. Sci.
,
15
(
2
), pp.
423
435
.10.2298/TSCI1102423A
28.
Mussa
,
M. A.
,
Abdullah
,
S.
,
Azwadi
,
C. S. N.
, and
Muhamad
,
N.
,
2011
, “
Simulation of Natural Convection Heat Transfer in an Enclosure by the lattice-Boltzmann Method
,”
Comput. Fluids
,
44
(
1
), pp.
162
168
.10.1016/j.compfluid.2010.12.033
29.
Aharonov
,
E.
, and
Rothman
,
D. H.
,
1993
, “
Non-Newtonian Flow (Through Porous Media): A Lattice Boltzmann Method
,”
Geophys. Res. Lett.
,
20
(
8
), pp.
679
682
.10.1029/93GL00473
30.
Gabbanelli
,
S.
,
Drazer
,
G.
, and
Koplik
,
J.
,
2005
, “
Lattice Boltzmann Method for non-Newtonian (Power-Law) Fluids
,”
Phys. Rev. E
,
72
(
4
), p.
046312
.10.1103/PhysRevE.72.046312
31.
Buick
,
J. M.
,
2009
, “
Lattice Boltzmann Simulation of Power-Law Fluid Flow in the Mixing Section of a Single-Screw Extruder
,”
J. Non-Newtonian Fluid Mech.
,
64
(
1
), pp.
52
58
.10.1016/j.ces.2008.09.016
32.
Chai
,
Z.
,
Shi
,
B.
,
Guo
,
Z.
, and
Rong
,
F.
,
2011
, “
Multiple-Relaxation-Time Lattice Boltzmann Model for Generalized Newtonian Fluid Flows
,”
J. Non-Newtonian Fluid Mech.
,
166
(
5–6
), pp.
332
342
.10.1016/j.jnnfm.2011.01.002
33.
Mendu
,
S. S.
, and
Das
,
P. K.
,
2012
, “
Flow of Power-Law Fluids in a Cavity Driven by the Motion of Two Facing Lids-a Simulation by Lattice Boltzmann Method
,”
J. Non-Newtonian Fluid Mech.
,
175–176
, pp.
10
24
.10.1016/j.jnnfm.2012.03.007
34.
Ng
,
M. L.
, and
Hartnett
,
J. P.
,
1986
, “
Natural Convection in Power Law Fluids
,”
Int. Comm. Heat Mass Transfer
,
13
(
1
), pp.
115
120
.10.1016/0735-1933(86)90078-3
35.
Bhatnagar
,
P. L.
,
Gross
,
E. P.
, and
Krook
,
M.
,
1954
, “
A Model for Collision Process in Gasses
,”
Phys. Rev.
,
94
(
3
), pp.
511
525
.10.1103/PhysRev.94.511
36.
Mohamad
,
A. A.
, and
Kuzmin
,
A.
,
2010
, “
A Critical Evaluation of Force Term in Lattice Boltzmann Method, Natural Convection Problem
,”
Int. J. Heat Mass Transfer
,
53
(
5–6
), pp.
990
996
.10.1016/j.ijheatmasstransfer.2009.11.014
37.
Artoli
,
A.
,
2003
, “
Mesoscopic Computational Haemodynamics
,” Ph.D. thesis,
University of Amsterdam
,
Amsterdam, The Netherlands
.
38.
Phillips
,
T. N.
, and
Roberts
,
G. W.
,
2011
, “
Lattice Boltzmann Models for non-Newtonian Flows
,”
IMA J. Appl. Math.
,
76
(
5
), pp.
790
816
.10.1093/imamat/hxr003
You do not currently have access to this content.