Abstract

Accurate prediction of bubble dynamic parameters is essential to improve boiling heat transfer models. Considering the complexities and challenges associated with performing a large number of boiling experiments, researchers have realized the importance of experimental correlations for predicting bubble dynamic parameters. In this direction, we report an experimental work concerned with the development of correlations for various bubble liftoff parameters during nucleate flow boiling regime. As a definite advancement, the experimental measurements have been performed in a purely nonintrusive manner, thereby minimizing the errors arising due to the interaction of any external probe with the process under study. The measurement approach makes use of a gradient-based imaging technique to simultaneously map the bubbling features and thermal field around a single vapor bubble generated under subcooled flow boiling conditions. Experiments have been performed in a rectangular channel for a wide range of heat fluxes (q" = 20–50 kW/m2), subcooling level (ΔTsub = 2–9 K), and Reynolds numbers (Re=600–6000) with water as the working fluid. Results show a strong dependence of bubble liftoff parameters on Reynolds number, subcooling level, and applied heat flux. Based on the experimental measurements, empirical correlations have been developed for various bubble liftoff parameters as a function of Jacob number and Reynolds number. Predictions made through the developed correlations are found to be in good agreement with the measured values as well as with the values reported in the available literature. Of all the bubble parameters, maximum deviation between the predicted and measured values (≈23%) was found to be in bubble release frequency.

References

1.
Gunther
,
F. C.
,
1951
, “
Photographic Study of Surface-Boiling Heat Transfer to Water With Forced Convection
,”
Jet Propuls. Lab. ASME
,
73
(
2
), pp.
115
124
.https://www.scopus.com/record/display.uri?eid=2-s2.0-0000095616&origin=inward&txGid=7bc5a58f4f16fc2d45806e8978cbcd28
2.
Abdelmessih
,
A. H.
,
Hooper
,
F. C.
, and
Nangia
,
S.
,
1972
, “
Flow Effects on Bubble Growth and Collapse in Surface Boiling
,”
Int. J. Heat Mass Transfer
,
15
(
1
), pp.
115
125
.10.1016/0017-9310(72)90170-6
3.
Bibeau
,
E. L.
, and
Salcudean
,
M.
,
1994
, “
A Study of Bubble Ebullition in Forced- Convective Subcooled Nucleate Boiling at Low Pressure
,”
Int. J. Heat Mass Transfer
,
37
(
15
), pp.
2245
2259
.10.1016/0017-9310(94)90367-0
4.
Zeitoun
,
O.
, and
Shoukri
,
M.
,
1996
, “
Bubble Behavior and Mean Diameter in Subcooled Flow Boiling
,”
ASME J. Heat Transfer
,
118
(
1
), pp.
110
116
.10.1115/1.2824023
5.
Thorncroft
,
J. F.
,
Klausner
,
G. E.
, and
Mei
,
R.
,
1998
, “
An Experimental Investigation of Bubble Growth and Detachment in Verticalupflow and Downflow Boiling
,”
Int. J. Heat Mass Transfer
,
41
(
23
), pp.
3857
3871
.10.1016/S0017-9310(98)00092-1
6.
Prodanovic
,
V.
,
Fraser
,
D.
, and
Salcudean
,
M.
,
2002
, “
Bubble Behavior in Subcooled Flow Boiling of Water at Low Pressures and Low Flow Rates
,”
Int. J. Multiph. Flow
,
28
(
1
), pp.
1
19
.10.1016/S0301-9322(01)00058-1
7.
Okawa
,
T.
,
Ishida
,
T.
,
Kataoka
,
I.
, and
Mori
,
M.
,
2005
, “
Bubble Rise Characteristics After the Departure From a Nucleation Site in Vertical Upflow Boiling of Subcooled Water
,”
Nucl. Eng. Des.
,
235
(
10–12
), pp.
1149
1161
.10.1016/j.nucengdes.2005.02.012
8.
Zuber
,
N.
,
1961
, “
The Dynamics of Vapor Bubbles in Nonuniform Temperature Fields
,”
Int. J. Heat Mass Transfer
,
2
(
1–2
), pp.
83
98
.10.1016/0017-9310(61)90016-3
9.
Unal
,
H. C.
,
1976
, “
Maximum Bubble Diameter, Maximum Rate During the Subcooled Nucleate Flow Boiling
,”
Int. J. Heat Mars Transfer
,
19
, pp.
643
649
.10.1016/0017-9310(76)90047-8
10.
Chi-Yeh
,
H.
, and
Griffith
,
P.
,
1965
, “
The Mechanism of Heat Transfer in Nucleate Pool Boiling—Part I: Bubble Initiaton, Growth and Departure
,”
Int. J. Heat Mass Transfer
,
8
(
6
), pp.
887
904
.10.1016/0017-9310(65)90073-6
11.
Colombo
,
M.
, and
Fairweather
,
M.
,
2015
, “
Prediction of Bubble Departure in Forced Convection Boiling: A Mechanistic Model
,”
Int. J. Heat Mass Transfer
,
85
, pp.
135
146
.10.1016/j.ijheatmasstransfer.2015.01.103
12.
Yoo
,
J.
,
Estrada-Perez
,
C. E.
, and
Hassan
,
Y. A.
,
2018
, “
Development of a Mechanistic Model for Sliding Bubbles Growth Prediction in Subcooled Boiling Flow
,”
Appl. Therm. Eng.
,
138
, pp.
657
667
.10.1016/j.applthermaleng.2018.04.096
13.
Raj
,
S.
,
Pathak
,
M.
, and
Khan
,
M. K.
,
2017
, “
An Analytical Model for Predicting Growth Rate and Departure Diameter of a Bubble in Subcooled Flow Boiling
,”
Int. J. Heat Mass Transfer
,
109
, pp.
470
481
.10.1016/j.ijheatmasstransfer.2017.02.026
14.
Zeng
,
L. Z.
,
Klausner
,
J. F.
, and
Mei
,
R.
,
1993
, “
A Unified Model for the Prediction of Bubble Detachment Diameters in Boiling Systems—II. Flow Boiling
,”
Int. J. Heat Mass Transfer
,
36
(
9
), pp.
2271
2279
.10.1016/S0017-9310(05)80112-7
15.
Zeng
,
L. Z.
,
Klausner
,
J. F.
, and
Mei
,
R.
,
1993
, “
A Unified Model for the Prediction of Bubble Detachment Diameters in Boiling Systems- I. Pool Boiling
,”
Int. J. Heat Mass Transfer
,
36
(
9
), pp.
2261
2270
.10.1016/S0017-9310(05)80111-5
16.
Klausner
,
J. F.
,
Mei
,
R.
,
Bernhard
,
D. M.
, and
Zeng
,
L. Z.
,
1993
, “
Vapor Bubble Departure in Forced Convection Boiling
,”
Int. J. Heat Mass Transfer
,
36
(
3
), pp.
651
662
.10.1016/0017-9310(93)80041-R
17.
Situ
,
R.
,
Hibiki
,
T.
,
Ishii
,
M.
, and
Mori
,
M.
,
2005
, “
Bubble Lift-Off Size in Forced Convective Subcooled Boiling Flow
,”
Int. J. Heat Mass Transfer
,
48
(
25–26
), pp.
5536
5548
.10.1016/j.ijheatmasstransfer.2005.06.031
18.
Chen
,
D.
,
Pan
,
L. M.
, and
Ren
,
S.
,
2012
, “
Prediction of Bubble Detachment Diameter in Flow Boiling Based on Force Analysis
,”
Nucl. Eng. Des.
,
243
, pp.
263
271
.10.1016/j.nucengdes.2011.11.022
19.
Sugrue
,
R.
, and
Buongiorno
,
J.
,
2016
, “
A Modified Force-Balance Model for Prediction of Bubble Departure Diameter in Subcooled Flow Boiling
,”
Nucl. Eng. Des.
,
305
, pp.
717
722
.10.1016/j.nucengdes.2016.04.017
20.
Yun
,
B.-J.
,
Splawski
,
A.
,
Lo
,
S.
, and
Song
,
C.-H.
,
2012
, “
Prediction of a Subcooled Boiling Flow With Advanced Two-Phase Flow Models
,”
Nucl. Eng. Des.
,
253
, pp.
351
359
.10.1016/j.nucengdes.2011.08.067
21.
Guan
,
P.
,
Jia
,
L.
,
Yin
,
L.
, and
Tan
,
Z.
,
2016
, “
Effect of Bubble Contact Diameter on Bubble Departure Size in Flow Boiling
,”
Exp. Heat Transfer
,
29
(
1
), pp.
37
52
.10.1080/08916152.2014.926433
22.
Du
,
J.
,
Zhao
,
C.
, and
Bo
,
H.
,
2018
, “
Investigation of Bubble Departure Diameter in Horizontal and Vertical Subcooled Flow Boiling
,”
Int. J. Heat Mass Transfer
,
127
, pp.
796
805
.10.1016/j.ijheatmasstransfer.2018.07.019
23.
Zhou
,
P.
,
Huang
,
R.
,
Huang
,
S.
,
Zhang
,
Y.
, and
Rao
,
X.
,
2020
, “
Experimental Investigation on Bubble Contact Diameter and Bubble Departure Diameter in Horizontal Subcooled Flow Boiling
,”
Int. J. Heat Mass Transfer
,
149
, p.
119105
.10.1016/j.ijheatmasstransfer.2019.119105
24.
Basu
,
N.
,
Warrier
,
G. R.
, and
Dhir
,
V. K.
,
2005
, “
Wall Heat Flux Partitioning During Subcooled Flow Boiling: Part 2—Model Validation
,”
ASME J. Heat Transfer
,
127
(
2
), pp.
131
140
.10.1115/1.1842784
25.
Situ
,
R.
,
Ishii
,
M.
,
Hibiki
,
T.
,
Tu
,
J. Y.
,
Yeoh
,
G. H.
, and
Mori
,
M.
,
2008
, “
Bubble Departure Frequency in Forced Convective Subcooled Boiling Flow
,”
Int. J. Heat Mass Transfer
,
51
(
25–26
), pp.
6268
6282
.10.1016/j.ijheatmasstransfer.2008.04.028
26.
Chu
,
I.
,
No
,
H. C.
, and
Song
,
C.
,
2011
, “
Bubble Lift-Off Diameter and Nucleation Frequency in Vertical Subcooled Boiling Flow
,”
J. Nucl. Sci. Technol.
,
48
(
6
), pp.
936
949
.10.1080/18811248.2011.9711780
27.
Brooks
,
C. S.
,
Silin
,
N.
,
Hibiki
,
T.
, and
Ishii
,
M.
,
2015
, “
Experimental Investigation of Wall Nucleation Characteristics in Flow Boiling
,”
ASME J. Heat Transfer
,
137
(
5
), p.
051501
.10.1115/1.4029593
28.
Yang
,
L. X.
,
Guo
,
A.
, and
Liu
,
D.
,
2016
, “
Experimental Investigation of Subcooled Vertical Upward Flow Boiling in a Narrow Rectangular Channel
,”
Exp. Heat Transfer
,
29
(
2
), pp.
221
243
.10.1080/08916152.2014.973978
29.
Kaiho
,
K.
,
Okawa
,
T.
, and
Enoki
,
K.
,
2017
, “
Measurement of the Maximum Bubble Size Distribution in Water Subcooled Flow Boiling at Low Pressure
,”
Int. J. Heat Mass Transfer
,
108
, pp.
2365
2380
.10.1016/j.ijheatmasstransfer.2017.01.027
30.
Greenberg
,
P. S.
,
Klimek
,
R. B.
, and
Buchele
,
D. R.
,
1995
, “
Quantitative Rainbow Schlieren Deflectometry
,”
Appl. Opt.
,
34
(
19
), pp.
3810
3825
.10.1364/AO.34.003810
31.
Narayan
,
S.
,
Singh
,
T.
, and
Srivastava
,
A.
,
2020
, “
Experiments on Pool Boiling Regimes and Bubble Departure Characteristics of Single Vapor Bubble Under Subcooled Bulk Conditions
,”
Exp. Therm. Fluid Sci.
,
111
, p.
109943
.10.1016/j.expthermflusci.2019.109943
32.
Kangude
,
P.
,
Bhatt
,
D.
, and
Srivastava
,
A.
,
2018
, “
Experiments on the Effects of Nanoparticles on Subcooled Nucleate Pool Boiling
,”
Phys. Fluids
,
30
(
5
), p.
057105
.10.1063/1.5027295
33.
Sinha
,
G. K.
,
Mahimkar
,
S.
, and
Srivastava
,
A.
,
2019
, “
Schlieren-Based Simultaneous Mapping of Bubble Dynamics and Temperature Gradients in Nucleate Flow Boiling Regime: Effect of Flow Rates and Degree of Subcooling
,”
Exp. Therm. Fluid Sci.
,
104
, pp.
238
257
.10.1016/j.expthermflusci.2019.02.018
34.
Sinha
,
G. K.
, and
Srivastava
,
A.
,
2020
, “
Whole Field Measurements to Quantify the Thermal Impact of Single Vapor Bubble Under Nucleate Flow Boiling Regime
,”
Int. J. Heat Mass Transfer
,
157
, p.
119932
.10.1016/j.ijheatmasstransfer.2020.119932
35.
Kline
,
S. J.
, and
McClintocK
,
F. A.
,
1953
, “
Describing Uncertainties in Single-Sample Experiments
,”
Mech. Eng.
,
75
, pp.
3
8
.https://www.scopus.com/record/display.uri?eid=2-s2.0-0004653830&origin=inward&txGid=81d1d4720de7619297d4ae24f9323062
36.
Naylor
,
D.
,
2002
, “
On the Accuracy of Beam-Averaged Interferometric Heat Transfer Measurements
,”
ASME J. Heat Transfer
,
124
(
5
), pp.
978
982
.10.1115/1.1482400
37.
Siedel
,
S.
,
Cioulachtjian
,
S.
, and
Bonjour
,
J.
,
2008
, “
Experimental Analysis of Bubble Growth, Departure and Interactions During Pool Boiling on Artificial Nucleation Sites
,”
Exp. Therm. Fluid Sci.
,
32
(
8
), pp.
1504
1511
.10.1016/j.expthermflusci.2008.04.004
38.
Cao
,
Y.
,
Kawara
,
Z.
,
Yokomine
,
T.
, and
Kunugi
,
T.
,
2016
, “
Visualization Study on Bubble Dynamical Behavior in Subcooled Flow Boiling Under Various Subcooling Degree and Flowrates
,”
Int. J. Heat Mass Transfer
,
93
, pp.
839
852
.10.1016/j.ijheatmasstransfer.2015.10.053
39.
Thorncroft
,
G. E.
,
Klausner
,
J. F.
, and
Mei
,
R.
,
2001
, “
Bubble Forces and Detachment Models
,”
Multiph. Sci. Technol.
,
13
(
3–4
), pp.
35
76
.10.1615/MultScienTechn.v13.i3-4.20
40.
Sinha
,
G. K.
, and
Srivastava
,
A.
,
2019
, “
Experiments to Compare the Dynamics and Thermal Impact of Single Vapor Bubble Subjected to Upward and Downward Flow Boiling Configurations
,”
Exp. Heat Transfer
,
33
(
6
), pp.
487
509
.10.1080/08916152.2019.1662518
41.
Yoo
,
J.
,
Estrada-Perez
,
C. E.
, and
Hassan
,
Y. A.
,
2016
, “
Experimental Study on Bubble Dynamics and Wall Heat Transfer Arising From a Single Nucleation Site at Subcooled Flow Boiling Conditions - Part 1: Data Analysis on Sliding Bubble Characteristics and Associated Wall Heat Transfer
,”
Int. J. Multiph. Flow
,
84
, pp.
315
324
.10.1016/j.ijmultiphaseflow.2016.04.018
42.
Son
,
G.
,
Dhir
,
V. K.
, and
Ramanujapu
,
N.
,
1999
, “
Dynamics and Heat Transfer Associated With a Single Bubble During Nucleate Boiling on a Horizontal Surface
,”
ASME J. Heat Transfer
,
121
(
3
), pp.
623
631
.10.1115/1.2826025
You do not currently have access to this content.