Abstract

To improve the reliability and efficiency of power electronics, their thermal management must be further enhanced. Next-generation electronics systems are predicted to dissipate more heat as die size shrinks and power levels increase. Traditional air-cooling approaches usually provide insufficient performance or require heavy and bulky heat sinks to achieve adequate thermal management. To address this problem, a novel air cooled vertically enhanced manifold microchannel system (VEMMS) was developed. While minimizing the footprint required on the printed circuit board, the system offers efficient thermal management in a conformal scheme that accommodates the associated power electronics and their electrical connections. This work describes the manufacturing process of the air-cooled VEMMS heat sink and its experimental characterization and thermo-fluidic performance. Good agreement was obtained between the test results and numerical predictions. Using air at ambient conditions, thermal resistance of 2.6 K/W was achieved with a single-sided cooling architecture with a <1.5 cm2 footprint and <2 cm3 total heat sink volume. A full-bridge electrical power density of ∼84 kWe/L and overall direct current (DC–DC) converter power density of ∼20 kWe/L were achieved at reasonable flow rates and pressure drops using commercially available miniature electric fans.

References

1.
Mandel
,
R. K.
,
Bae
,
D. G.
, and
Ohadi
,
M. M.
,
2018
, “
Embedded Two-Phase Cooling of High Flux Electronics Via Press-Fit and Bonded FEEDS Coolers
,”
ASME J. Electron. Packag.
,
140
(
3
), p.
031003
. 10.1115/1.4039264
2.
Sharar
,
D.
,
Jankowski
,
N. R.
, and
Morgan
,
B.
,
2010
, “
Review of Two-Phase Electronics Cooling for Army Vehicle Applications
,”
Report No. ARL-TR-5323
.https://apps.dtic.mil/sti/pdfs/ADA529968.pdf
3.
Ditri
,
J.
,
Hahn
,
J.
,
Cadotte
,
R.
,
McNulty
,
M.
, and
Luppa
,
D.
,
2015
, “
Embedded Cooling of High Heat Flux Electronics Utilizing Distributed Microfluidic Impingement Jets
,”
ASME Paper No. IPACK2015-48689
. 10.1115/IPACK2015-48689
4.
Sung
,
M. K.
, and
Mudawar
,
I.
,
2006
, “
Experimental and Numerical Investigation of Single-Phase Heat Transfer Using a Hybrid Jet-Impingement/Micro-Channel Cooling Scheme
,”
Int. J. Heat Mass Transfer
,
49
(
3–4
), pp.
682
694
.10.1016/j.ijheatmasstransfer.2005.08.021
5.
Coursey
,
J. S.
,
Kim
,
J.
, and
Kiger
,
K. T.
,
2006
, “
Spray Cooling of High Aspect Ratio Open Microchannels
,”
ASME. J. Heat Transfer-Trans. ASME
,
129
(
8
), pp.
1052
1059
.10.1115/1.2737476
6.
Darabi
,
J.
,
Ohadi
,
M. M.
, and
Desiatoun
,
S. V.
,
2000
, “
Falling Film and Spray Evaporation Enhancement Using an Applied Electric Field
,”
ASME J. Heat Transfer-Trans. ASME
,
122
(
4
), pp.
741
748
.10.1115/1.1288932
7.
Sathe
,
S.
, and
Sammakia
,
B.
,
1998
, “
A Review of Recent Developments in Some Practical Aspects of Air-Cooled Electronic Packages
,”
ASME J. Heat Transfer-Trans. ASME
,
120
(
4
), pp.
830
839
.10.1115/1.2825902
8.
Sparrow
,
E. M.
, and
Ohadi
,
M. M.
,
1987
, “
Comparison of Turbulent Thermal Entrance Regions for Pipe Flows With Developed Velocity and Velocity Developing From a Sharp-Edged Inlet
,”
ASME J. Heat Transfer-Trans. ASME
,
109
(
4
), pp.
1028
1030
.10.1115/1.3248175
9.
He
,
J.
,
Liu
,
L.
, and
Jacobi
,
A. M.
,
2010
, “
Air-Side Heat-Transfer Enhancement by a New Winglet-Type Vortex Generator Array in a Plain-Fin Round-Tube Heat Exchanger
,”
ASME J. Heat Transfer-Trans. ASME
,
132
(
7
), pp.
1
9
.10.1115/1.4000988
10.
Jubran
,
B. A.
, and
Al-Haroun
,
M. S.
,
1998
, “
Heat Transfer Enhancement in Electronic Modules Using Various Secondary Air Injection Hole Arrangements
,”
ASME J. Heat Transfer-Trans. ASME
,
120
(
2
), pp.
342
347
.10.1115/1.2824254
11.
Huber
,
A. M.
, and
Viskanta
,
R.
,
1994
, “
Convective Heat Transfer to a Confined Impinging Array of Air Jets With Spent Air Exits
,”
ASME J. Heat Transfer-Trans. ASME
,
116
(
3
), pp.
570
576
.10.1115/1.2910908
12.
Arik
,
M.
,
Sharma
,
R.
,
Lustbader
,
J.
, and
He
,
X.
,
2013
, “
Steady and Unsteady Air Impingement Heat Transfer for Electronics Cooling Applications
,”
ASME J. Heat Transfer-Trans. ASME
,
135
(
11
), p.
111009
. 10.1115/1.4024614
13.
Arie
,
M. A.
,
Shooshtari
,
A. H.
,
Rao
,
V. V.
,
Dessiatoun
,
S. V.
, and
Ohadi
,
M. M.
,
2017
, “
Air-Side Heat Transfer Enhancement Utilizing Design Optimization and an Additive Manufacturing Technique
,”
ASME J. Heat Transfer-Trans. ASME
,
139
(
3
), p.
031901
.10.1115/1.4035068
14.
Waye
,
S.
,
Musselman
,
M.
, and
King
,
C.
,
2014
,
Air Cooling for High Temperature Power Electronics (Presentation)
,
NREL ( National Renewable Energy Laboratory)
,
Denver, CO
.
15.
Wrzecionko
,
B.
,
Bortis
,
D.
, and
Kolar
,
J. W.
,
2014
, “
A 120 °C Ambient Temperature Forced Air-Cooled Normally-Off SiC JFET Automotive Inverter System
,”
IEEE Trans. Power Electron.
,
29
(
5
), pp.
2345
2358
.10.1109/TPEL.2013.2294906
16.
Chen
,
S.
,
Yu
,
W.
, and
Meyer
,
D.
,
2019
, “
Design and Implementation of Forced Air-Cooled, 140 kHz, 20 kW SiC MOSFET Based Vienna PFC
,”
Conference Proceedings—IEEE Applied Power Electronics Conference and Exposition—APEC
,
Institute of Electrical and Electronics Engineers
,
Anaheim, CA
, pp.
1196
1203
.
17.
Wu
,
T.
,
Ozpineci
,
B.
,
Chinthavali
,
M.
,
Wang
,
Z.
,
Debnath
,
S.
, and
Campbell
,
S.
,
2017
, “
Design and Optimization of 3D Printed Air-Cooled Heat Sinks Based on Genetic Algorithms
,” 2017 IEEE Transportation and Electrification Conference and Expo, ITEC 2017,
Institute of Electrical and Electronics Engineers
,
Chicago, IL
, pp.
650
655
.
18.
Yuruker
,
S. U.
,
Mandel
,
R. K.
,
McCluskey
,
P.
, and
Ohadi
,
M.
,
2021
, “
A Vertically-Enhanced Manifold Microchannel System (VEMMS) for Thermal Management of Power Electronics
,”
IEEE Trans. Compon., Packag. Manuf. Technol.
, epub.10.1109/TCPMT.2021.3082771
19.
Yuruker
,
S. U.
,
Mandel
,
R. K.
,
McCluskey
,
P.
,
Ohadi
,
M. M.
,
Chakraborty
,
S.
,
Park
,
Y.
,
Yun
,
H.
,
Khaligh
,
A.
,
Boteler
,
L.
, and
Hinojosa
,
M.
,
2019
, “
Advanced Packaging and Thermal Management of High-Power DC-DC Converters
,”
ASME Paper No. IPACK2019-6559
.10.1115/IPACK2019-6559
20.
Park
,
Y.
,
Chakraborty
,
S.
, and
Khaligh
,
A.
,
2020
, “
A Bare-Die SiC-Based Isolated Bidirectional DC-DC Converter for Electric Vehicle on-Board Chargers
,”
2020 IEEE Transportation Electrification Conference and Expo, ITEC 2020
,
Institute of Electrical and Electronics Engineers
,
Chicago, IL
, pp.
49
54
.
21.
CREE,
CREE-CPM2-1700-0045A Silicon Carbide Power MOSFET C2M TM MOSFET Technology
,” accessed Jan. 28, 2021, ttps://www.wolfspeed.com/downloads/dl/file/id/1987/product/661/cpm2_1700_0045a.pdf
22.
Liang
,
Z.
,
Ning
,
P.
,
Wang
,
F.
, and
Marlino
,
L.
,
2014
, “
A Phase-Leg Power Module Packaged With Optimized Planar Interconnections and Integrated Double-Sided Cooling
,”
IEEE J. Emerg. Sel. Top. Power Electron.
,
2
(
3
), pp.
443
450
.10.1109/JESTPE.2014.2312292
23.
Charboneau
,
B. C.
,
Wang
,
F.
,
Van Wyk
,
J. D.
,
Boroyevich
,
D.
,
Liang
,
Z.
,
Scott
,
E. P.
, and
Tipton
,
C. W.
,
2005
, “
Double-Sided Liquid Cooling for Power Semiconductor Devices Using Embedded Power Packaging
,”
Conference Record—IAS Annual Meeting
(
IEEE Industry Applications Society
), Hong Kong, China, pp.
1138
1143
.
24.
Yoon
,
S. W.
,
Shiozaki
,
K.
, and
Kato
,
T.
,
2014
, “
Double-Sided Nickel-Tin Transient Liquid Phase Bonding for Double-Sided Cooling
,”
Conference Proceedings—IEEE Applied Power Electronics Conference and Exposition—APEC
,
Institute of Electrical and Electronics Engineers
,
Fort Worth, TX
, pp.
527
530
.
25.
Burress
,
T. A.
,
Campbell
,
S. L.
,
Coomer
,
C.
,
Ayers
,
C. W.
,
Wereszczak
,
A. A.
,
Cunningham
,
J. P.
,
Marlino
,
L. D.
,
Seiber
,
L. E.
, and
Lin
,
H.-T.
,
2011
,
Evaluation of the 2010 Toyota Prius Hybrid Synergy Drive System
,
Oak Ridge, TN
.
26.
Burress
,
T. A.
,
Coomer
,
C. L.
,
Campbell
,
S. L.
,
Wereszczak
,
A. A.
,
Cunningham
,
J. P.
,
Marlino
,
L. D.
,
Seiber
,
L. E.
, and
Lin
,
H. T.
,
2009
,
Evaluation of the 2008 Lexus LS 600H Hybrid Synergy Drive System
,
Oak Ridge, TN
.
27.
Mitsubishi Electric,
2015
, “
Mitsubishi Electric's Railcar Traction Inverter With All-SiC Power Modules Achieves 40% Power Savings
,”
Mitsubishi Electric
.https://www.mitsubishielectric.com/news/2015/pdf/0622-a.pdf
28.
Anwar
,
M.
,
Hasan
,
S. M. N.
,
Teimor
,
M.
,
Korich
,
M.
, and
Hayes
,
M. B.
,
2015
, “
Development of a Power Dense and Environmentally Robust Traction Power Inverter for the Second-Generatio Chevrolet VOLT Extended-Range EV
,”
IEEE Energy Conversion Congress and Exposition, ECCE 2015
,
Institute of Electrical and Electronics Engineers
,
Montreal, QC, Canada
, pp.
6006
6013
.10.1109/ECCE.2015.7310502
29.
AVX, “
AVX—Surface Mount Chip Resistors—RP4 and RP5 Series
,” accessed Jan. 28,
2021
, https://www.mouser.com/datasheet/2/40/ResistorsRP4RP5-1366220.pdf
30.
Microsi, “
Thermal Grease X23-7762 | Shin-Etsu MicroSi
,” accessed Mar. 2,
2021
, https://www.microsi.com/solutions-products/thermal-interface-material/tim-2/thermal-grease-x23-7762/
31.
Hamburgen
,
W.
,
1986
,
Optimal Finned Heat Sinks
,
Western Research Laboratory
,
Palo Alto, CA
.https://www.hpl.hp.com/techreports/Compaq-DEC/WRL-86-4.pdf
32.
Hodes
,
M.
,
Zhang
,
R.
,
Lam
,
L. S.
,
Wilcoxon
,
R.
, and
Lower
,
N.
,
2014
, “
On the Potential of Galinstan-Based Minichannel and Minigap Cooling
,”
IEEE Trans. Compon., Packag. Manuf. Technol
,.,
4
(
1
), pp.
46
56
.10.1109/TCPMT.2013.2274699
33.
Liu
,
D.
, and
Garimella
,
S. V.
,
2005
, “
Analysis and Optimization of the Thermal Performance of Microchannel Heat Sinks
,”
Int. J. Numer. Methods Heat Fluid Flow
,
15
(
1
), pp.
7
26
.10.1108/09615530510571921
34.
Sanyo Denki, “
San Ace 38 9GA Type Low Power Consumption Fan
,” accessed Jan. 28,
2021
, https://www.mouser.com/datasheet/2/471/San_Ace_38GA28_E-1282470.pdf
35.
Gillot
,
C.
,
Schaeffer
,
C.
, and
Bricard
,
A.
,
1998
, “
Integrated Micro Heat Sink for Power Multichip Module
,”
Conference Record—IAS Annual Meeting (IEEE Industry Applications Society)
,
IEEE
,
St. Louis, MO
, pp.
1046
1050
.
36.
Lee
,
T. Y.
,
2000
, “
Design Optimization of an Integrated Liquid-Cooled IGBT Power Module Using CFD Technique
,”
IEEE Trans. Compon. Packag. Technol
,.,
23
(
1
), pp.
55
60
.10.1109/6144.833042
37.
Boteler
,
L. M.
,
Niemann
,
V. A.
,
Urciuoli
,
D. P.
, and
Miner
,
S. M.
,
2017
, “
Stacked Power Module With Integrated Thermal Management
,”
2017 IEEE International Workshop on Integrated Power Packaging, IWIPP 2017
,
Institute of Electrical and Electronics Engineers
,
Delft, The Netherlands
, Apr. 5–7, pp.
1
5
.10.1109/IWIPP.2017.7936764
38.
Liang
,
Z.
,
Van Wyk
,
J. D.
,
Lee
,
F. C.
,
Boroyevich
,
D.
,
Scott
,
E. P.
,
Chen
,
Z.
, and
Pang
,
Y.
,
2004
, “
Integrated Packaging of a 1 KW Switching Module Using a Novel Planar Integration Technology
,”
IEEE Trans. Power Electron.
,
19
(
1
), pp.
242
250
.10.1109/TPEL.2003.820597
39.
Xu
,
Y.
,
Husain
,
I.
,
West
,
H.
,
Yu
,
W.
, and
Hopkins
,
D.
,
2016
, “
Development of an Ultra-High Density Power Chip on Bus (PCoB) Module
,”
ECCE 201–IEEE Energy Conversion Congress and Exposition, Proceedings
,
Institute of Electrical and Electronics Engineers
,
Milwaukee, WI
, Sept. 18–22, pp.
1
7
.10.1109/ECCE.2016.7855040
You do not currently have access to this content.