Abstract

Thermal management of equipment is a very crucial step for optimum operation. This study is aimed at modifying the shape of traditionally circular electronic components to enhance their thermal-hydraulic performance. The frontal portions have been replaced with different profiles of conic sections such as parabola and hyperbola to understand the influence of frontal modification on fluid dynamics and heat transfer. The study has been carried out for confinement of 4d to mimic the confined fluid environment as in electronic chambers and the Reynolds numbers considered range from 60 to 500. The numerically simulated data were postprocessed and elucidated with the help of contour plots, various drag coefficients, total pressure drop, Strouhal number, and Nusselt number. The results claim that hyperbolic front with rear segment offers the best heat transfer with an improvement of 5.78% as compared to circular components, whereas the parabolic front has the best thermal-hydraulic performance. Parabolic profile reduces drag by 2.66% and improves heat transfer by 4.14%.

References

1.
Davis
,
R. W.
, and
Moore
,
E. F.
,
1982
, “
A Numerical Study of Vortex Shedding From Rectangles
,”
J. Fluid Mech.
,
116
, pp.
475
506
.10.1017/S0022112082000561
2.
Davis
,
R. W.
,
Moore
,
E. F.
, and
Purtell
,
L. P.
,
1984
, “
A Numerical-Experimental Study of Confined Flow Around Rectangular Cylinders
,”
Phys. Fluids
,
27
(
1
), p.
46
.10.1063/1.864486
3.
Bearman
,
P. W.
, and
Graham
,
J. M. R.
,
1980
, “
Vortex Shedding From Bluff Bodies in Oscillatory Flow
,”
A Rep. Euromech.
,
99
(
2
), pp.
225
245
.10.1017/S0022112080000596
4.
Okajima
,
A.
,
1982
, “
Strouhal Numbers of Rectangular Cylinders
,”
J. Fluid Mech.
,
123
, pp.
379
398
.10.1017/S0022112082003115
5.
Poulikakos
,
D.
, and
Bejan
,
A.
,
1982
, “
Fin Geometry for Minimum Entropy Generation in Forced Convection
,”
ASME J. Heat Transfer
,
104
(
4
), pp.
616
623
.10.1115/1.3245176
6.
Williamson
,
C. H.
,
1996
, “
Vortex Dynamics in the Cylinder Wake
,”
Annu. Rev. Fluid Mech.
,
28
(
1
), pp.
477
539
.10.1146/annurev.fl.28.010196.002401
7.
Braza
,
M.
,
Chassaing
,
P.
, and
Minh
,
H. H.
,
1986
, “
Numerical Study and Physical Analysis of the Pressure and Velocity Fields in the Near Wake of a Circular Cylinder
,”
J. Fluid Mech.
,
165
(
1
), pp.
79
130
.10.1017/S0022112086003014
8.
Wirtz
,
R. A.
,
Sohal
,
R.
, and
Wang
,
H.
,
1997
, “
Thermal Performance of Pin-Fin Fan-Sink Assemblies
,”
ASME J. Electron Pack.
,
119
(
1
), pp.
26
31
.10.1115/1.2792197
9.
Lee
,
T.
,
1994
, “
Application of CFD Technology to Electronic Thermal Management
,”
44th Electronic Component & Technology Conference
,
Washington, DC
, May 1–4, pp.
411
420
.
10.
Lee
,
T.
,
Chambers
,
B.
, and
Mahalingam
,
M.
,
1995
, “
Application of CFD Technology to Electronic Thermal Management
,”
IEEE Trans. Compon. Packag. Technol.
,
18
, pp.
411
519
.10.1109/ECTC.1994.367557
11.
Lange
,
C. F.
,
Durst
,
F.
, and
Breuer
,
M.
,
1998
, “
Momentum and Heat Transfer From Cylinder in Laminar Cross-Flow at 10−4 ≤ Re ≤ 200
,”
Int. J. Heat Mass Transfer
,
41
(
22
), pp.
3409
3430
.10.1016/S0017-9310(98)00077-5
12.
Behnia
,
M.
,
Copeland
,
D.
, and
Soodphakdee
,
D.
,
1998
, “
A Comparison of Heat Sink Geometries for Laminar Forced Convection: Numerical Simulation of Periodically Developed Flow
,”
Sixth Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITHERM'98)
,
Seattle, WA
, May 27–30, pp.
310
315
.10.1109/ITHERM.1998.689579
13.
Iyengar
,
M.
, and
Bar-Cohen
,
A.
,
2000
, “
Design for Manufacturability of SISE Parallel Plate Forced Convection Heat Sinks
,”
IEEE Trans. Compon. Packag. Technol.
,
24
(
2
), pp.
150
158
.10.1109/6144.926377
14.
Yang
,
R. J.
, and
Fu
,
L. M.
,
2001
, “
Thermal and Flow Analysis of a Heated Electronic Component
,”
Int. J. Heat Mass Transfer
,
44
(
12
), pp.
2261
2275
.10.1016/S0017-9310(00)00265-9
15.
Zovatto
,
L.
, and
Pedrizzetti
,
G.
,
2001
, “
Flow About a Circular Cylinder Between Parallel Walls
,”
J. Fluid Mech.
,
440
, pp.
1
25
.10.1017/S0022112001004608
16.
Culham
,
J. R.
, and
Muzychka
,
Y. S.
,
2001
, “
Optimization of Plate Fin Heat Sinks Using Entropy Generation Minimization
,”
IEEE Trans. Compon. Packag. Technol.
,
24
(
2
), pp.
159
165
.10.1109/6144.926378
17.
Khan
,
W. A.
,
Culham
,
J. R.
, and
Yovanovich
,
M. M.
,
2004
, “
Fluid Flow and Heat Transfer From a Cylinder Between Parallel Planes
,”
J. Thermophys. Heat Transfer
,
18
(
3
), pp.
395
403
.10.2514/1.6186
18.
Sharma
,
A.
, and
Eswaran
,
V.
,
2004
, “
Effect of Channel Confinement on the Two-Dimensional Laminar Flow and Heat Transfer Across a Square Cylinder
,”
Num. Heat Transfer
,
47
(
1
), pp.
79
107
.10.1080/10407780490520760
19.
Mehmet
,
S.
, and
Owens
,
R. G.
,
2004
, “
A Numerical Investigation of Wall Effects Up to High Blockage Ratios on Two-Dimensional Flow Past a Confined Circular Cylinder
,”
Phys. Fluids
,
16
(
5
), pp.
1305
1320
.10.1063/1.1668285
20.
Jyoti
,
C.
,
Verma
,
N.
, and
Chhabra
,
R. P.
,
2004
, “
Wall Effects in Flow Past a Circular Cylinder in a Plane Channel: A Numerical Study
,”
J. Chem. Eng. Process.
,
43
(
12
), pp.
1529
1537
.10.1016/j.cep.2004.02.004
21.
Bharti
,
R. P.
,
Chhabra
,
R. P.
, and
Eswaran
,
V.
,
2007
, “
A Numerical Study of the Steady Forced Convection Heat Transfer From an Unconfined Circular Cylinder
,”
Heat Mass Transfer
,
43
(
7
), pp.
639
648
.10.1007/s00231-006-0155-1
22.
Senthil Kumar
,
R.
, and
Jayavel
,
S.
,
2017
, “
Influence of Flow Shedding Frequency on Convection Heat Transfer From Bank of Circular Tubes in Heat Exchangers Under Cross Flow
,”
Int. J. Heat Mass Transfer
,
105
, pp.
376
393
.10.1016/j.ijheatmasstransfer.2016.09.097
23.
Khan
,
W. A.
,
Culham
,
J. R.
, and
Yovanovich
,
M. M.
,
2008
, “
Optimization of Pin-Fin Heat Sinks in Bypass Flow Using Entropy Generation Minimization Method
,”
ASME J. Electron. Packag.
,
130
(
3
), p.
031010
.10.1115/1.2965209
24.
Zeitoun
,
O.
,
Ali
,
M.
, and
Nuhait
,
A.
,
2011
, “
Convective Heat Transfer Around a Triangular Cylinder in Cross Flow
,”
Int. J. Therm. Sci.
,
50
(
9
), pp.
1685
1697
.10.1016/j.ijthermalsci.2011.04.011
25.
Nishchay
,
S.
, and
Senthil Kumar
, R.,
2019
, “
Numerical Analysis of Heat Transfer and Primary Geometrical Influence on Secondary Cylinder at Inline Arrangements
,”
AIP Conference Proceedings
2161
, p.
020024
. 10.1063/1.5127615
26.
Mettu
,
S.
,
Verma
,
N.
, and
Chhabra
,
R. P.
,
2006
, “
Momentum and Heat Transfer From an Asymmetrically Confined Circular Cylinder in a Plane Channel
,”
J. Heat Mass Transfer
,
42
(
11
), pp.
1037
1048
.10.1007/s00231-005-0074-6
27.
Eckert
,
E. R. G.
, and
Soehngen
,
E.
,
1952
, “
Distribution of Heat Transfer Coefficients Around Circular Cylinders in Cross Flow at Reynolds Numbers From 20 to 500
,”
ASME J. Heat Transfer
,
74
, pp.
343
347
.
28.
Kanaris
,
N.
,
Grigoriadis
,
D.
, and
Kassinos
,
S.
,
2011
, “
Three Dimensional Flow Around a Circular Cylinder Confined in a Plane Channel
,”
Phys. Fluids
,
23
(
6
), p.
064106
.10.1063/1.3599703
29.
Deepakkumar
,
R.
,
Jayavel
,
S.
, and
Tiwari
,
S.
,
2016
, “
Computational Study of Fluid Flow Characteristics Past Circular Cylinder Due to Confining Walls With Local Waviness
,”
J. Phys.: Conf. Ser.
,
759
, p.
012083
.10.1088/1742-6596/759/1/012083
You do not currently have access to this content.